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Abstract

This paper presents the Conceptual Design Review for Project ToppleBot, whose mission is to
design, manufacture, and control a scalable wheel cube rover. The cube’s design must be
transferable to variable cube sizes, providing a procedure for others to replicate and iterate over
different configurations for their specific payload requirements. Applications of such a rover are
plentiful, mitigating control dilemmas that face other robotic platforms in space applications and
improving reproducibility and scalability through its efficient, straightforward design. ToppleBot
will build off the successes of CUBEBAS [1], REM-RC [13], Cubli [2] and more by developing
a similar design with improvements to the system architecture through the integration of
additional communication abilities, structural improvements, electrical systems, control
behaviors, and a novel sizing algorithm.

Utilizing the capabilities of micro-ROS, ToppleBot will communicate wirelessly with the control
station allowing for direct, real-time visualization of the cube’s orientation and real-time control
over the cube’s high-level behaviors, such as balancing, spin, kip-up, and topple. Such a
framework also allows for the control of a multi-agent system. The microprocessor onboard the
cube will receive the high-level behavior commands and transfer them to low-level motor
commands through a closed-loop control algorithm integrated with an onboard IMU. The fully
integrated electrical system, ensuring safe and precise operation will ensure that the low-level
commands are delivered to the respective motors. Structurally, the ToppleBot will feature the
integration of threaded inserts for increased stability, additive manufacturing materials for rapid
prototyping (PLA and PETG), and damping mechanisms to minimize structural loads in toppling
behaviors. Lastly, using the parameters derived from mathematical and CAD models, an
algorithm will be developed such that a user may input a desired ToppleBot dimension, and will
receive the necessary parameters for its creation and deployment.

The proposed ToppleBot project is to be completed in partial fulfillment of the requirements for
EP 496, Space Systems Design I. It will also provide Embry-Riddle’s Physical Sciences
Department a scalable architecture for future senior design robotics projects, with an
accompanying sizing algorithm and additional software.
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1. Introduction

Self-balancing cubes, such as those developed in projects like CUBEBAS and ETH Zurich’s
Cubli, utilize reaction wheels to maintain active stability along a point or edge. These systems
operate on similar principles to the inverted pendulum problem; however, their ability to move in
all six degrees of freedom (DOF), including rotational and translational motion, provides a
compelling platform for studying balance and stability. Unfortunately, most previous designs
have relied on external intervention to bring the cube into a balancing pose. Project ToppleBot
aims to address this limitation by incorporating a braking mechanism, allowing the cube to
initiate its own balancing pose, as Cubli demonstrated.

Building on the foundations of CUBEBAS and Rem-RC, ToppleBot seeks to implement
significant advancements in system control, operation, and scalability. In addition to the braking
mechanism, ToppleBot will refine control algorithms, enhance communication capabilities, and
improve structural design, making the platform more adaptable to different cube sizes. These
improvements will allow for greater stability and user customization, providing a system that can
be easily replicated for future applications.

Even in the event of a braking mechanism failure, ToppleBot will be designed to implement
considerable advancements in control precision and stability compared to CUBEBAS. The
project focuses on refining movement, balance, and overall system reliability, ensuring better
performance in dynamic environments. By building upon prior work and addressing key
limitations, ToppleBot seeks to improve the self-balancing cube design workflow, producing
comparable functionality to Cubli with a scalable framework for future developments.
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2. Systems Overview

2.1. Mission Statement

To design and manufacture a scalable reaction wheel cube robot capable of balancing on its
edges and corners. The ToppleBot will demonstrate capabilities across different sizes, with an
accompanying algorithm to facilitate its adaptable creation across different sizes, payloads, and
applications.

2.2. Mission Objectives

2.2.1. Primary Mission Objective

To achieve balancing on corners and edges, resistant to disturbances using a closed-loop control
algorithm while displaying the cube’s orientation through the control station.

2.2.2. Secondary Mission Objective

To develop a scalable algorithm that allows future users to build a ToppleBot of arbitrary size
and payload, adjusting for inertial, structural, and control differences across sizes.

2.2.3. Tertiary Mission Objective

To achieve locomotion control and odometry tracking through the use of balance, spin, kip-up,
and topple behaviors with sensor integration.

2.3. Systems Requirements

2.3.1. Functional Requirements

The ToppleBot must be capable of balancing on both its edges and corners, with real-time
orientation data transmitted to the command station. Its mathematical and structural design
should be flexible enough to generate unique configurations based on random inputs.
Additionally, the ToppleBot should execute controlled locomotion, rotation, and kip-ups, all
while continuously sending performance data back to the control station.

2.3.2. Operational Requirements

The ToppleBot must achieve specific operational requirements for the project to be successful. It
must operate continuously for a minimum of 30 minutes. Additionally, it should withstand a drop
of 0.5 meters while remaining structurally secure and be capable of enduring moderately harsh
environments. From a communication and control perspective, the ToppleBot must maintain
communication with the command center from at least 10 meters away, with an angular
deviation of less than one degree when balancing. Furthermore, the CAD model must support
scalability within 5% to ensure future adaptability.
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Table 1: Mission Requirements

Functional

Primary Mission Performance
Maintain balance on edges
Maintain balance on corners
Send orientation data to the control station

Secondary Mission Performance
Provide design parameters such as torque
requirements, power requirements, and structural
dimensions, based on overall dimension inputs.

Tertiary Mission Performance

Perform spin, kip-up, and topple behaviors.
Perform locomotion based on control station
commands.
Maintain stability and odometry tracking
throughout locomotion.

Operational

Operational Duration Maintain 30 minutes of continuous operation.

Resilience Withstand drop from 0.5m height
Reliability Physical barrier from outside elements
Communication 10+ meters indoors
Control Maintain angular deviation within 1 degree
Scalability Within a 5% of CAD model

2.4. Constraints

As with any design project, there are various constraints related to the design of the ToppleBot.
These constraints are detailed below, in Table 2. It is important to note that this project is to be
fully completed within 8 months; thus, quick action is necessitated from the team to get the
system operational and begin testing and optimization. Another notable constraint is the
manufacturing constraint of 3D printing bed area. Due to this limitation, larger cubes will be
harder to test, meaning that the sizing algorithm will have less accurate results for larger systems.

Table 2: Mission Constraints

Constraints

Cost
Limited to a ~ $1,000 budget for all
components, manufacturing, and materials

Operating Date Must be fully operational by May 1, 2025

Operating Location
Primarily designed for indoor use, and space
applications cannot be tested

Control Must utilize momentum wheels and brakes only

Manufacturing
Printing is limited to the 3D printing bed area
and materials

Communication
Communication must be supported by
micro-ROS
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2.5. System Context Diagram

Figure 1 depicts the framework of ToppleBot’s operation. Briefly summarizing the information
shown, the onboard IMU and microprocessor will take the ToppleBot’s current state and desired
behaviors (sent from the control station), and convert them into low-level motor commands. This
conversion will be facilitated by an onboard control algorithm, with all computation housed
onboard the ToppleBot for minimal control latency and maximum control authority. ToppleBot’s
state will also be broadcasted to the control station such that it can be displayed through RVIZ. In
order to receive the information, the control station will need to deploy a micro-ROS agent,
bridging the gap between Micro-ROS and ROS2 Humble onboard the control station.

Figure 1: ToppleBot System Context Diagram
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3. Structural System

ToppleBot’s structural design must fulfill the requirements in Table 3 to have a suitable structure
for its function. Drawing from the initial design of the CUBEBAS project, additional changes to
the structure must be implemented to account for the new objectives of ToppleBot. New motions
such as the “kip-up” or “topple” behavior emphasize the importance of structural resilience.
Incorporating a breaking mechanism to accomplish this will also call for a reorganization of the
motor, wheel, and electrical mounting that differs from the system's original design.

To execute the established requirements considerations of materials, reaction wheel, motor
mounting, braking mechanism, and microcontroller mounting will be explored. These changes
aim to successfully fulfill the structural requirements of the project to create a durable, scalable,
and controllable system.
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Table 3: Structural System Requirements

Number Requirement
Measure of Performance

Justification Owner Validation Priority Status Remarks
Threshold Objective

3.1
The cube rover must
withstand repeated shocks
to its frame.

Shock from
Rotation

Shock from
Controlled
Drop (0.5
meters)

The locomotion of the
cube rover produces a
consistent impact as the
system transitions between
statically stable positions.

Erin
FEA Models and
Physical Testing

1
Not

Started

3.2
The reaction wheels must
provide sufficient control
authority.

Balancing
Capabilitie

s

Kip-Up
Capability

Necessary to perform any
locomotion or "kip-up"
behaviors.

Erin
Mathematical
Models and

Physical Testing
1

Not
Started

3.3
Each reaction wheel must
be equipped with a durable
braking mechanism.

100+
Cycles

1000+ Cycles
Improves system
practicality by reducing
component replacements.

Erin
Isolated System
Endurance
Testing

1
In

Progress

3.4
The reaction wheel mounts
must withstand abrupt
spikes in reaction torques.

Sufficient
torque to
produce
Kip-Up
reaction.

Sufficient
torque to stop
motors at full

speed.

The system must be
structurally sound.

Erin
FEA Models and
Physical Testing

1
Not

Started

Required
torques will
be determined
with CAD.

3.5
The design of the cube
rover should be scalable
with defined parameters.

Parametric
Design

N/A

Reduces the need to
completely remodel
components should
parameters change.

Erin CAD 2
In

Progress

3.6

A sizing algorithm (Python
or MATLAB) shall produce
system requirements and
specifications from the
input cube size.

Output of
Basic

Parameters
(Torque,

Power, etc.)

Output of
Comprehensiv
e Parameters

Allows for easier
replication by similar
project groups.

Erin

Additional
ToppleBot

Iteration Sourced
from Algorithm

2
Not

Started
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3.1. Material Considerations

ToppleBot will be experiencing structural impacts during motion, high torques, and rapid
braking. Therefore, the materials used for printing must be able to sustain shocks to the frame
and be durable enough not to deform from repeated testing. Currently, materials under
consideration for the structural aspects of ToppleBot, specifically the framing and mounting, are
PETG and PLA. PLA would prove useful for initial prototypes of this project because it tends to
be a more workable material and easier to print with. This would be a reasonable choice because
it allows for cheaper and simpler printing in cases where reprinting for the sake of refinement
may be common. PETG, conversely, would be a more viable option for a finalized design in
which frequent testing will be present. PETG does have an increased price and is more difficult
to print with due to its higher melting point. Yet, it will be rewarded with higher impact and
abrasion resistance, which will decrease the likelihood of fractures during testing; therefore,
extending the longevity of the structure. Overall, the cost and printing differences between PLA
and PETG would be considered minute, making PETG the most likely material option for the
main structure of ToppleBot across all portions of the design process. TPU is currently being
considered for the implementation of corner caps with the purpose of shock absorption. The
elastic and rubbery properties of TPU will increase the longevity of the frame during repeated
impacts during motion. For future iterations, constructing the frame from aluminum would
increase the durability of the frame and mounting components. This is currently not viable
during the prototyping stage of development.

3.2. Reaction Wheel Options

Two design options for the reaction wheel are viable for the ToppleBot. The first of which would
be based on the original CUBEBAS wheel design that was 3D printed. For this design, the
printed wheels were weighted using nuts and bolts around the perimeter. This method of
weighting the wheel would make the wheel more textured and less viable for the mounting and
breaking options to be discussed below. This method of wheel construction would be cheaper
and more accessible because it can be printed in the lab. The second design option for the wheel
would be machining it using aluminum. This would allow for the weighting to be distributed
throughout the wheel, and it would allow for smoother braking and structural organization.
Unfortunately, this option is both pricier and less accessible compared to the previous
consideration.

3.3. Motor Mounting Options

Motors for the wheels would be mounted using an offset structure that would be directly
connected to the internal side of the ToppleBot. This structure would be 3D-printed and will
create a gap for the wheel to sit internally. The mounting structure will be placed on three of the
sides allowing for each of the three wheels to have sufficient room internally and create a space
for the braking system to interact with the wheel. Other mounting considerations would be a
main center mount where each other the three motors will be placed. This would allow for a
greater space for the implementation of a braking mechanism which, depending on the braking
mechanism decision, would be necessary. Since the current path of the braking mechanism is the
brake pad, the center-mounted motors would be the most viable choice to maximize the amount
of space allowed for the internal wheels and brakes.

7



3.4. Braking Mechanism Options

A breaking mechanism would be incorporated with the wheel to abruptly halt the wheel's
motion. This could be done using brake pads or a motorized pole. Brake pads would be a
friction-based stopping method, this form of braking would have increased longevity compared
to a collision-based braking method such as a motorized pole. The brake pad would be a curved
plate attached to a motor, that would then be put into contact with the edge of the wheel to
provide a friction force that opposes the wheel’s motion. A motorized pole would be
implemented as a “stick” or pole that is attached to a motor, when activated this pole would
collide with the bolts, or other parts of the structure to provide instantaneous braking.
Unfortunately, this method has been tested in similar projects and did not withstand repeated
impact for extended testing. Therefore, with our current design plans, a brake pad would be the
most probable consideration for a braking mechanism.

Table 4: Braking Mechanism Comparison

Braking Option Advantages Disadvantages

Brake Pad
Systems

● higher durability which will equate
to longevity

● Less damage to the wheel because
of a lack of collision

● Higher surface area contact which
would lead to more precise
braking

● Larger mechanism, less
space-efficient

● Possibly slower breaking, thus it
may not be able to produce the
required force

Pole

● More compact mechanism
● Faster braking due to immediate

and forceful contact

● Collision braking would cause more
damage to parts, thus decreasing the
longevity of both the pole and wheel

● Less controlled breaking due to
decreased contact area

3.5. Microcontroller and Sensor Mounting

In previous models of the CUBEBAS project, microcontroller mounting was placed in the center
of the frame, along with the battery and other electronics. This method of mounting allowed for
the center of mass to remain close to the center of the cube. With the implementation of a
breaking mechanism, the microcontroller and other sensors could be placed internally on the
non-wheel sides of the frame. This would allow the mass of the internal materials to be more
evenly dispersed after the addition of the braking mechanism, as well as, allow for an increased
space to be utilized for motor mounting structures. With the wheels being placed internally, as
opposed to CUBEBAS where they were external, and the likelihood of a brake pad being
implemented, side mounts for the electronics would allow for a better utilization of space and a
balanced structure.
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4. Electrical System

The electrical systems are critical to the functionality of ToppleBot, facilitating seamless
communication between all components. There are four primary areas that the electrical system
must address to ensure effective operation. As detailed in the table below, these sections function
independently yet must synchronize to enable precise control from the control station.

Several challenges have been identified within the electrical system. A significant concern is
power distribution and protection against reverse currents during motor braking. This challenge
arises from the necessity for the chosen battery to supply adequate amperage for three motors,
the microcontroller, and the IMU. Furthermore, the braking system may generate reverse
currents, which pose a risk of damaging various components.

The circuit structure is straightforward, utilizing a PCB to ensure secure connections that can
operate effectively in any orientation. The design incorporates a microcontroller, IMU, PCB
relay, and motors equipped with integrated motor drivers. These components were selected based
on their compatibility demonstrated in preliminary testing, facilitating the development of a
functional prototype.

To ensure the safety of both the ToppleBot and the user, two main features are being added:
diodes and a relay, which will protect specific circuit elements. Further details are provided in
sections 4.3.1 and 4.2.2.

The image below illustrates the third iteration of the circuit diagram. The pinouts for the
microcontroller to the various components are currently provisional; specific assignments will be
finalized upon completion of the coding and the determination of final design choices. This
layout represents the current arrangement of all necessary components for the circuit's
functionality.
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Figure 2: Preliminary Circuit Design Diagram.
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Table 5: Electrical System Requirements

Number Requirement
Measure of Performance

Justification Owner Validation Priority Status Remarks
Threshold Objective

5.1

The cube rover must
have a battery that
adequately powers all
subsystems.

10 minutes 30 minutes

DC motor
performance
scales with
available power.

William
Circuit Design and

Drain Cycle
1 In Progress

5.2

The cube rover must
possess an Emergency
Stop mechanism that
instantly cuts power
to all subsystems.

N/A N/A

Every electrical
prototype with
powerful
actuators should
have an E-Stop.

William
Circuit Design and
Physical Testing

1 Not Started

5.3

The cube rover must
be able to control the
motors adequately for
precise control
(MOTOR DRIVER
etc.)

N/A N/A

Necessary for
proper
functionality and
gives the ability
to topple with
precision.

William
Testing to Ensure

Motors Stop Quickly
and Safely

1 In Progress

5.4

Provide stable
communication with
all of the different
parts to ensure the
sensors run smoothly.

Stable
Communication
During Balancing

Stable
Communication
During Toppling

Having a strong
connection will
let the
ToppleBot stay
working for
longer.

William
Testing of Systems
and Continuous

Toppling
1 Not Started
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4.1. Power Management Options

Power management is a critical aspect of the system design, requiring careful consideration of
several factors. Adequate power must be supplied to all components, ensuring the appropriate
voltage levels are maintained. A voltage divider is utilized for stepping down the voltage from
the battery to the microcontroller. Additionally, protective measures must be implemented to
safeguard against potential back currents generated by the motors during braking. These
considerations are essential to ensure that all components operate harmoniously within
ToppleBot’s circuitry.

4.1.1. Battery Selection

The battery selection is crucial for a successful project. The battery must be powerful enough to
operate the three motors and the microcontroller for an adequate amount of time. The current
battery consideration is the GlobTek BL2600C1865003S1PGMG (BL2). This battery provides
11.1V and 2.6 Ah, which should provide enough runtime to properly test and demonstrate the
ToppleBot. The BL2 is a rechargeable battery which is crucial for quick testing, reliability, and
cost-effectiveness. Moreover, the wire connections provide an easy way to connect this battery to
the terminals of the voltage divider and emergency relay. Finally, this battery is fairly small
which is important to fit inside of the ToppleBot.

Figure 3: Picture of GlobTek Li-ion Battery.

4.1.2. Voltage Regulator

A voltage regulator is necessary since the 11.1V from the BL2 battery would break the
microcontroller without one. An LM2596 voltage regulator will be utilized for this application.
The voltage divider that is being used is built on a PCB board with built-in capacitors and
resistors for fine adjustments of the output voltage that will be placed on our PCB board. The
input of this voltage regulator is 3V to 40V and can be adjusted and limited to any voltage within
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that range. With this regulator the battery will be plugged in and a voltage of exactly 5V will be
output to power the microcontroller and any subsequent components.

Figure 4: Picture of LM2596 Voltage Regulator.

4.1.3. Battery, Microcontroller, and Motor Protection

Each component requires protection, as the braking mechanism could generate reverse currents
and voltages that may damage sensitive parts. To address this, a diode will be implemented to
safeguard the components by allowing current to flow in only the desired direction. This
protection is particularly important for the microcontroller, ensuring that reverse voltage does not
reach and damage the microcontroller.

4.1.4. Thermal Considerations

The thermal restrictions are very lenient since the cube will not be sealed in for our preliminary
full builds. The cube being open to airflow allows the battery, motors, and diodes to dissipate
heat effectively and freely to be of little concern in the preliminary testing. On the other hand, in
future applications when the ToppleBot is fully enclosed protecting the circuitry inside from
harsh environments the thermal properties of each component and proper ventilation will be
crucial considerations. Some thermal regulation methods under consideration include fans and
ducts to control the temperature within the enclosed ToppleBot.

4.2. Emergency Stopping System

A new emergency-stopping system will be designed and implemented in the circuitry to ensure
user and equipment safety. The function of the emergency stop will be to automatically
disconnect the battery by using a killswitch within the circuitry. The GUI in the control station
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will feature a prominent red button that sends a signal to the relay, disconnecting power to the
motors and bringing them to a quick stop, preventing uncontrolled operation and potential
hazards.

4.2.1. Relay Choice

We are selecting the OMRON G8P-1A4P relay, a straightforward relay that will connect to the
microcontroller. Connecting the relay to the microcontroller is essential, as it allows control via
the GUI. Upon receiving a signal from the microcontroller through the control station, the relay
will cut all power to the motors. This Relay has an input voltage range of 10.2 to 13.2V so the
voltage from the battery will work.

Figure 5: Picture of OMRON Electrical Relay.

4.2.2. Safety Feature

Implementing an emergency-stopping feature is essential for protecting both the ToppleBot and
ensuring the safety of manual operation. If the motors become unresponsive or exhibit runaway
behavior, the system allows us to cut power to the motors remotely from the control station,
forcing an immediate shutdown. This override capability is crucial, as it ensures that the rapidly
spinning motors can be stopped without manual intervention

4.3. Motor Control System

We are currently using a motor with an integrated control system, allowing the motor driver to be
housed within the motor itself. This integrated design optimizes space and reduces power
requirements, resulting in a simplified circuit layout that enhances organization and cleanliness.
The built-in motor driver also facilitates more efficient control, enabling precise motor starting
and stopping for balance and movement. For our preliminary tests, we are utilizing the Japan
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24H Brushless Servo Motor, equipped with a Drive 100 Line Encoder and PWM speed
regulation. This setup enables speed adjustments through a Pulse Width Modulation (PWM)
signal sent directly to the built-in driver circuit.

Various motors are being evaluated to identify the optimal choice for each specific cube size, as
torque requirements and related calculations will vary with size. For instance, the Cubli utilizes
Maxon EC 45 Flat 50W BLDC motors [13], while the REM-RC uses Nidec 24H motors[14].
The motors are all very similar to each other yet there are at different quality levels that reflect
on the specifications.

The integrated motor driver provides additional advantages, including streamlined control and
minimized space requirements. This configuration allows for rapid motor response to control
signals, reducing latency between command and action. Furthermore, an integrated driver-motor
setup eliminates compatibility concerns, significantly reducing development and testing time and
allowing for focus on other critical system considerations. In the future, we will continue to use
motors with integrated motor drivers only with better specifications. The cohesive design
enhances reliability, as the motor and driver are purpose-built to function seamlessly together.

Table 6: DC Motor Comparisons

Motor Efficiency Torque Reliability Price Customization

Maxon EC-45 Very High High Very High High Extensive

Nidec 24H High Moderate High Moderate Limited

Japan 24H Moderate Moderate to
High

Moderate Low Moderate
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Figure 6: Picture of Japan 24H BLDC Motors.

4.4. Sensor Communication Protocol and Proper Connections

The system must operate effectively in any orientation, and proper grounding is essential to
protect components from reverse voltage generated by the motors. All wiring must be securely
contained within the structure, as the ToppleBot will rotate frequently, and space is limited due to
the compact cubic design. A reliable communication protocol and secure connections are crucial
for ToppleBot’s functionality; the system cannot operate without stable connections. Various
strategies are being implemented to ensure robust communication and secure connections
throughout the device.

4.4.1. Communication

An Inter-Integrated Circuit (I2C) bus is a communication system that links multiple devices
(such as sensors and peripherals) to a microcontroller using only two wires: SDA (Serial Data)
and SCL (Serial Clock). These two wires allow all connected devices to share the same bus.
Each device on the bus has a unique ID, so when the microcontroller sends data, it includes the
target device's ID along with the command. This enables efficient communication across
multiple devices with minimal wiring, as each device recognizes and responds only to commands
that match its ID. This communication system still uses two other separate wires for power and
ground.

The signal travels down the wires to each component in the circuit, passing through each one
along the way. The I2C protocol is unique because all components are connected to the same
data and clock lines. To manage communication on a shared line, the signal output from the
microcontroller contains two parts: an address (or ID) and the command itself. Each component
has a unique address, and when a signal with a matching address passes by, the component
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listens to the following command and executes the instruction. This combination of address and
command is what enables I2C to function efficiently, making it a more effective cabling method
for multiple devices.

While there are other bus protocols that can effectively communicate data, we have chosen to use
I²C for this application. For example, SPI employs four wires and offers faster communication
but is more cumbersome, complex, and supports only a limited number of devices. Additionally,
asynchronous serial communication could be utilized; however, it is designed for point-to-point
communication with a single device, making it less suitable for our specific needs. As stated in a
SparkFun article, “I²C requires a mere two wires, like asynchronous serial, but those two wires
can support up to 1008 peripheral devices. Also, unlike SPI, I²C can support a multi-controller
system, allowing more than one controller to communicate with all peripheral devices on the
bus” [15].

The communication protocol leverages I2C buses to streamline system implementation. These
buses provide two connection paths that link all elements along a given line, allowing signals to
be sent with a unique ID and command for each element. This approach is highly beneficial as it
minimizes the wiring required between components, optimizing the circuit’s layout.
Additionally, it enhances circuit efficiency by reducing signal paths and enabling faster, more
straightforward communication between elements.

4.4.2. PCB Board

To ensure reliable connections, a PCB will be used to maintain secure links from the
microcontroller to the wire outputs. Components will be either directly soldered to the board or
connected via adapter pins, facilitating easy replacement in the event of a component failure.
Additionally, cut-to-length wires will be used to prevent tangling and ensure stable attachment, a
critical factor in maintaining a clean, organized layout. This arrangement is essential for reliable
operation, as it minimizes the risk of disconnections or damage when the ToppleBot rotates and
shifts between orientations.
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5. Telecommunication

Keeping with the theme of improving upon past designs, like Cubli, REM-RC, and CUBEBAS,
ToppleBot will feature a display of the robot’s current state, as well as wireless control
capabilities. Of the three examples mentioned, CUBEBAS [1] made the most progress in this
endeavor, using a COM port to display the cube through MATLAB. Their configuration, while
showing initial success, did fail after “some time running” and used transformation matrices that
often showed an unusual offset. ToppleBot will take a similar, but more supported and common
approach to real-time robot visualization.

To fulfill the requirements of the real-time wireless display and control, a telecommunication
system is needed. The following sections will delineate the choices made to fulfill the
requirements of the telecommunication system. More specifically, Section 5.1 determines the
overall telecommunication framework, while Sections 5.2 and 5.3 describe the software stack
and microcontroller selection, respectively.

The choices made in the following section are made entirely with the system requirements as the
primary goal. The following table outlines the specific system requirements, measures of
performance and justifications for the telecommunication system for the ToppleBot project.
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Table 7: Telecommunication System Requirements

Number Requirement
Measure of Performance

Justification Owner Validation Priority Status Remarks
Threshold Objective

7.1

All communications
between the control
station and the cube
rover must be performed
wirelessly.

Wireless
Communication

Wireless
Control

Wired systems would
inhibit the
functionality of the
cube rover. Wireless
programming would
allow for quicker
prototyping.

Gabriel
Physical
Testing

1
In

Progress

7.2

The chosen transmission
frequency should bypass
line-of-sight obstructions
and provide adequate
range.

10+ meters 50+ meters

Allows for a
stationary control
station to be set up
away from the cube
rover.

Gabriel

Physical
Testing and
Technical

Specifications

2
Not

Started

7.3

The telecommunications
system must maintain
consistent performance
regardless of orientation.

TBD TBD

The cube's orientation
will change, so it's
crucial that
communications
remain unaffected.

Gabriel

Physical
Testing and
Technical

Specifications

1
Not

Started
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5.1. Telecommunication System Options

There are various options for communication between a robot and a control station. The
following table introduces some of the most common approaches, as well as their advantages and
disadvantages for the ToppleBot’s operating conditions.

Table 8: Telecommunication System Framework Options

Option Advantages Disadvantages Conclusion

Wi-Fi

- High-bandwidth
- Widely compatible with

robotic software
- Adequate range for indoor

applications

- Relatively high power
consumption

- Can be susceptible to
interference based on
orientation

- Often limited to indoor
applications

Good option for
moderate range,
complex
communications

Bluetooth

- Lower power consumption
- Can use COM port (like

CUBEBAS)
- Good for short range

communication

- Limited range
- Low-bandwidth

(compared to Wi-Fi)
- Resistant to

interference based on
orientation

Good option for short
range, simple
communications

LoRa
- Long range capabilities
- Low power consumption
- Resistant to disturbances

- Low-bandwidth
- Low compatibility

with robotic software

Good option for long
range, simple
communications

Zigbee

- Lower power consumption
- Medium range capabilities
- Reliable on crowded

networks

- Moderate-bandwidth
- Low compatibility

with robotic software

Good option for
medium range,
multi-agent systems

Considering the available options, Wi-Fi is evidently the most applicable. With its
high-bandwidth communication, the burden of data optimization (a challenge faced by
CUBEBAS) will be lifted, allowing the ToppleBot’s communications to not be limited by the
telecommunication data transfer. Additionally, especially during the first 8 months of the project,
most of the testing will take place indoors, and with great connectivity to Wi-Fi. Thus, the team
will be able to most easily and effectively communicate with the cube over Wi-Fi. Lastly,
common robotic software has support for Wi-Fi as many robotic applications are indoors.

As mentioned in Table 7, Wi-Fi does have some disadvantages. Of these, the most concerning is
the possibility of communication interference due to the robot’s orientation, surrounding
structures, and instrumentation. To meet requirement 6.3, it is important that these shortcomings
do not affect the system’s performance. Thus, if significant delays or complications arise, though
unlikely at short ranges, the altering of antenna geometry to minimize obstructions will be
explored.
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5.2. Communication Software Stack

Based on the choice to use Wi-Fi, a more informed decision could be made about the necessary
software stack to support the chosen telecommunication protocol. Additionally, as mentioned in
the structural and electrical discussion, the onboard hardware is limited to a microcontroller, with
lower RAM and less robotic software compatibility than larger and more expensive single-board
computers. Thus, the software used must be compatible with microcontrollers and support Wi-Fi
communication. It must also support complex data types for real-time display and control.

With the aforementioned considerations and additional tools for robotics, Micro Robot Operating
System (Micro-ROS) was chosen. To accurately introduce Micro-ROS concepts and the reasons
behind the decision to use Micro-ROS, ROS must first be introduced. The Robot Operating
System currently has 2 iterations, ROS and ROS2. It is built off of DDS (multiple
implementations) as the middleware layer and UDP as the transport layer [3]. These sub-systems
allow for a publish/subscribe communication framework to allow for different nodes (normally
Python or C++ executables) to communicate with each other. Micro-ROS allows access to this
same system onboard the limited memory microcontrollers. Micro-ROS offers seven key
features, as defined by the developers [4]:

1. Microcontroller-optimized client API supporting all major ROS concepts
2. Seamless integration with Robot Operating System 2 (ROS2)
3. Extremely resource-constrained but flexible middleware
4. Multi-RTOS support with generic build system
5. Permissive license
6. Vibrant community and ecosystem
7. Long-term maintainability and interoperability

In the Micro-ROS framework, the microcontroller acts as a node, with the capability to publish
and subscribe to different topics. In this configuration, Wi-Fi acts as the network layer, enabling
other systems to communicate with the microcontroller wirelessly. The ToppleBot will make use
of this wireless communication. Additionally, as detailed in feature 2, Micro-ROS integrates
seamlessly with ROS2, allowing the control station to use ROS2 to communicate with the cube.
Lastly, if we do need to switch between different microcontrollers, Micro-ROS supports panoply
of microcontrollers.

5.3. Microcontroller Options

Based on the choice to use Micro-ROS, a more informed decision could be made about the
necessary microcontroller to support the ToppleBot’s telecommunication needs. Luckily,
Micro-ROS lists the supported microcontroller on their website. To maximize scalability the
hardware selection also considers the size of the microcontroller, aiming to have the smallest
packaging for the smallest possible cubes. The following table contains some of the possible
options that met the size requirements and Micro-ROS compatibility:
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Table 9: Microcontroller Options

Option Key Features Supported Transports Conclusion

Espressif
ESP-32

- MCU: ultra-low power
dual-core Xtensa L13

- RAM: 520 kB
- Flash: 4 MB

- UART
- Wi-Fi UDP
- Ethernet UDP

Suitable for wireless
connection.

Arduino
Potenta H7

- MCU: Dual-core Arm
Cortex-M7 and Cortex-M4

- RAM: 8 MB
- Flash: 16 MB

- UART
- Wi-Fi UDP

Suitable for wireless
connection.

Raspberry
Pi Pico
RP2040

- MCU:Dual-core Arm
Cortex-M0+

- RAM: 264 kB
- Flash: up to 16 MB

- UART
- USB

Not suitable for
wireless connection.

Teensy 3.2
- MCU: ARM Cortex-M4

MK20D956VLH7
- RAM: 64kB
- Flash: 256 kB

- UART
- USB

Not suitable for
wireless connection.

Teensy
4.0/4.1

- MCU: ARM Cortex-M7
iMXRT1062

- RAM: 1024 kB
- Flash: 2048 kB

- UART
- USB
- Ethernet UDP (4.1)

Not suitable for
wireless connection.

It is imperative that the microcontroller aboard the ToppleBot can directly interface with Wi-Fi,
thus, from Table 8, it is evident that the only two options for the ToppleBot microprocessor are
the Espressif ESP-32 and the Arduino Potenta H7. Due to the minimal expected load on the
onboard microprocessor, the RAM is largely ignored. Additionally, CUBEBAS and REM-RC
both used the Espressif ESP-32, giving an example for how the microcontroller may be set up for
this application. Thus, the Espressif ESP-32 was chosen as the microprocessor for the ToppleBot.
As it is supported by Micro-ROS, it will easily integrate into the chosen telecommunication
system.

With the complete telecommunication system built off of Micro-ROS and the Espressif ESP-32,
the cube will be able to broadcast messages by publishing to ROS2 topics, and receive
commands by subscribing to ROS2 topics. Thus, the system will meet the requirements detailed
in Table 9.
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6. Control Station

As mentioned briefly in the overall system requirements, the control station must be able to
display the Topplebot’s current state and send behavioral command messages to the ToppleBot.
Additionally, in tandem with the sizing algorithm that will allow others to build their own
ToppleBot iterations, this control station must be easily deployed on various workstations with
minimal set-up and start-up time. The specific requirements, measures of performance and
justifications for the control station are detailed in Table 9.

The following subsections detail the methods for meeting the requirements defined in Table 9.
More precisely, Section 6.1 describes the overall system architecture, accounting for constraints
and tools set by the telecommunication system. Section 6.2 covers the visualization system and
software tailored to the ToppleBot, while Section 6.3 presents the behavioral command creation
that can be visually verified on the display. Lastly, Section 6.4 discusses how the ToppleBot
documentation will maximize workstation compatibility and minimize start-up and setup times
for future users.
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Table 10: Control Station System Requirements

Number Requirement
Measure of Performance

Justification Owner Validation Priority Status Remarks
Threshold Objective

10.1

The control station must
receive sensor data from
the cube rover throughout
the entire duration of its
operation.

N/A N/A
Necessary for
system monitoring
and troubleshooting.

Gabriel
Time-Stamped
Transmission

Logs
1 In Progress

Currently receiving
random integer
messages.

10.2

The control station must
utilize any received
sensor data to display the
cube rover's state and the
condition of all relevant
subsystems.

Command
Line

Interface

Graphical
User

Interface

Necessary for user
interface.

Gabriel

Observation
Agreement of
Cube State and
Displayed State

1 In Progress

Onboard
microprocessor is
receiving IMU
readings.

10.3

The control station must
be able to transmit
commands to modify the
cube rover's behavior.

Control
Algorithm
Selection

Desired
Control
Angle

Selection

Necessary for user
control over the
cube rover.

Gabriel
Observation of
Cube Behaviour

1 Not Started

10.4

The control station should
be deployable on a
standard workstation with
minimal modifications.

N/A N/A

Reduces reliance on
specific hardware,
allowing for easier
scalability.

Gabriel
Deployment on
Multiple Stations

2 Not Started

10.5

The control station
deployment should be
documented such that
future users can easily
deploy it.

1 Hour
Start-Up

20 Minute
Start-Up

Allows for easier
replication by
similar project
groups.

Gabriel
Timing of

Deployment on
Multiple Stations

2 In Progress
Directions will be
housed in
GitHub's ReadMe.
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6.1. Control Station Configuration

To meet the system requirements, the control station must be able to interface with the
telecommunication system, detailed in Section 5 of this report. By implementing Micro-ROS for
telecommunication, the choice of control station software was effectively determined, since
Micro-ROS can only interface effectively with ROS2. Thus, the control station will use a ROS2
installation with a Micro-ROS agent to bridge the gap between the micro-ROS communication
and the onboard ROS2 installation. The decision to use Micro-ROS factored for the integration
of ROS2, and allows the ToppleBot to make use of ROS2's plethora of tools for robotics.

The control station must be able to display the current state of the ToppleBot, while also sending
high-level behavioral commands to it. Both of these requirements will, in part, be facilitated by
the use of ROS2 topics. Through the telecommunication system, the cube and control station will
be able to subscribe to topics published by the respective systems. More specifically, the cube
will publish information about its orientation such that the control station can display the cube,
while the control station will publish behavioral commands such that the cube can act on control
station user input. The following sections will detail the specific methods for both the
visualization and command generation as they apply to the control station.

6.2. Visualization Configuration

Before detailing how the control station will visualize the ToppleBot state, the need for a control
station must be discussed. With the increasing computational capabilities of microcontrollers and
single-board computers, it is important to justify running computational efforts away from the
system and increasing its complexity. This justification lies in ToppleBot's efforts in scalability
and budget considerations. To maximize its scalability, the ToppleBot must minimize hardware
component size and weight. Thus, a single-board computer, like the Raspberry Pi, that could
possibly run all necessary computation for visualization, would prove too large and expensive for
this application. Instead, the ToppleBot is using the Esperessif ESP-32 with just 520 [kB] of
memory. With such limited memory, visualizations must be exported to a more capable system,
which will be the control station.

Thus, the onboard system will export its orientation information in a ROS2 topic named
“orientation” with an IMU message format. The IMU message, as defined by ROS2 developers,
is formatted as seen in Table 10 [5]. Note that the current IMU configuration returns Euler
angles, and the onboard system will need to convert the angles to a quaternion.
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Table 11: IMU Message Format

Message Component Format and Data Type Message Component Name

std_msgs/msg/Header header
- uint32
- time
- string

header
- seq
- stamp
- frame_id

geometry_msgs/msg/Quaternion
- float64
- float64
- float64
- float64

orientation
- x
- y
- z
- w

float64[9] orientation_covariance

geometry_msgs/msg/Vector3
- float64
- float64
- float64

angular_velocity
- x
- y
- z

float64[9] angular_velocity_covariance

geometry_msgs/msg/Vector3
- float64
- float64
- float64

linear_acceleration
- x
- y
- z

float64[9] linear_acceleration_convariance

While most of the entries are self explanatory, and are common for a 9 DOF IMU, the
covariances and header are unique to the ROS2 implementation. As can be expected, the
covariances are a measure of the uncertainty of the measurements. It is unlikely that these will be
used for a singular IMU configuration, because they are normally used for the odometry system
to know which IMU’s to weigh more or less. In more developed iterations, especially those at
larger scales, the incorporating of various IMU’s can be explored for maximum accuracy. The
header, on the other hand, contains the frame identification and other ROS2 specifics which are
used in visualization to ensure the correct object is displaying the transformations.

Subscribing to the “orientation” topic with IMU message type carrying the IMU information, the
control station will develop transfer frames using ROS2’s tf2 system [6]. In this system, there
exists a world frame and a robot frame. The world frame will be taken as the robot’s initial
orientation and position, while the robot frame will be constantly updated using the IMU
information and a node creating the transforms. The transform messages contain the following
information:
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Table 12: Transform Frame Message Format

Message Component Format Message Component Name

std_msgs/msg/Header
- uint32
- time
- string

header
- seq
- stamp
- frame_id

string child_frame_id

geometry_msgs/msg/Transform
- geometry_msgs/Vector3

- float64
- float64
- float64

- geometry_msgs/Quaternion
- float64
- float64
- float64
- float64

transform
- translation

- x
- y
- z

- rotation
- x
- y
- z
- w

The transforms are assigned to the child frame, which will be the robot’s frame. For initial
testing, the translation will not be accounted for, only accounting for the rotation derived from
the quaternion. To meet the odometry required (translation tracking), a mathematical model will
be made of the system (delineated in Section 7) from which odometry can be derived.

Importantly, to accurately display the cube in RViz, a model of it will be integrated. There are
two components of the modeling framework for RViz. There is a URDF (Unified Robot
Description Format) file written in XML that carries the physics and frame ID’s of the robot,
while STL files with the meshes of the robot are used for visualization. Thus, with the same
CAD models used for manufacturing, the robot can be displayed in RViz with accurate physics
described by the URDF file. For reference, an RViz example display [7] is shown below. In the
future, the robot will be modeled and displayed in this window on the control station, meeting
the display requirements:
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Figure 7: Example RViz display with initial cube for reference

6.3. Command Creation and Communication

To send commands to the ToppleBot from the control station, ROS2 actions will be utilized.
Using nodes in the ROS2 installation of the control station, actions can be called, providing
continuous feedback on the current state of the action until success or failure. Thus, an action
will be created for each of the behaviors: edge_balance, corner_balance, kip-up, and topple. The
definition and calling of the actions will be exclusively defined within the control station,
removing computational load from the onboard system.

The actions will define desired angular velocity and orientations for the control algorithm to
target, and the IMU will send feedback on action completion of failure. The control goals,
defined as ROS2 Vector3 and Quaternion messages to the “control_goal_ang_vel” and
“control_goal_quaternion” topics will be communicated to the cube which will convert such
control goals to motor commands. Initially, calling actions will be through the command line, but
further in development, a GUI will be developed using Python for more intuitive action calling.

6.4. Documentation and Compatibility

The final important consideration for the control station is minimizing start-up and set-up times
while maximizing work station compatibility. On Linux systems the start-up and set-up
optimization process is trivial. With a guide incorporated into the GitHub repository, a bash
script, written by the ToppleBot team, can be called to ensure all the necessary command line
arguments are passed within seconds. However, significant complexity arises when accounting
Windows workstations. To support Windows, additional documentation with directions for using
WSL (Windows Subsystem for Linux) will be provided such that the future users of ToppleBot
can deploy the system on their respective workstations within reasonable time limits.
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7. Control System

Accurate orientation determination is essential for the closed-loop feedback control of the cube
rover. This project employs a 9-DOF IMU that integrates an accelerometer, gyroscope, and
magnetometer to effectively track the rover’s orientation. Section 7.1 addresses the challenge of
sensor drift, detailing methods employed to mitigate this issue through the use of reference
points and filtering techniques. Section 7.2 reviews the technical specifications of the selected
sensors, comparing them to those utilized in ETH Zurich's Cubli and justifying the choice of a
9-DOF IMU by addressing potential concerns. Finally, Section 7.3 evaluates the necessity of
multiple IMUs to achieve robust performance, aiming to enhance the modeling framework
established in prior research while implementing mechanisms for autonomous self-balancing.
Collectively, these components lay a solid foundation for a cube rover capable of autonomously
maintaining its balance in dynamic environments, with specific performance measures outlined
in Table 6.
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Table 13: Control System Requirements

Number Requirement
Measure of Performance

Justification Owner Validation Priority Status
Threshold Objective

13.1

The cube rover must be
equipped with an IMU with
adequate sample rate and
precision.

TBD TBD

Accurate and current
data is essential for
effective control
calculations.

Kilian
Technical

Specifications
1

In
Progress

13.2
The cube rover controller
must transmit control signals
with minimal latency.

TBD TBD

Delays in actuation
reduce that
functionality of the
cube rover.

Kilian
Technical

Specifications
1

In
Progress

13.3

Each reaction wheel must
generate enough torque to
rotate the cube around its
edge.

Single
Rotation

Multiple
Rotations

Necessary to perform
any locomotion or
"kip-up" behaviors.

Kilian
System

Modelling and
Physical Testing

1
In

Progress

13.4
The cube rover should be
able to balance on any edge.

Starting on
Desired Edge

Starting on
Tangential

Face
Mission Objective Kilian Physical Testing 1

Not
Started

13.5
The cube rover should be
able to balance on any corner.

Starting on
Desired
Corner

Starting on
Tangential

Edge
Mission Objective Kilian Physical Testing 1

Not
Started

13.6

The cube rover should be
able to reject external
disturbances and maintain
stability.

TBD TBD Mission Objective Kilian Physical Testing 1
Not

Started



7.1. Orientation Determination

Accurately determining the state of the cube rover requires the integration of appropriate sensors.
A 9-DOF IMU is selected to meet this requirement, providing full orientation tracking. A 3-axis
accelerometer measures the accelerations experienced by the cube, allowing partial orientation
estimation relative to the Earth’s surface by identifying the direction of gravitational
acceleration. However, this alone is insufficient to fully define the cube’s orientation, as it
provides information about precession and nutation but leaves the spin around an axis normal to
the Earth's surface unresolved.

A 3-axis gyroscope solves this problem by measuring angular velocity, which can then be
integrated to determine the cube’s spin, giving a complete orientation profile. Together, the
accelerometer and gyroscope account for 6-DOF. While this setup seems sufficient for
orientation determination, it falls short in real-world applications due to sensor drift. Over time,
inaccuracies in the gyroscope data accumulate, causing the sensed orientation to deviate from the
true state. This drift, which often gets overlooked when moving from simulation to physical
implementation, becomes a significant issue in long-term operation.

Although increasing the sampling rate could reduce drift to some extent, it only goes so far. A
more reliable solution is to introduce a stable reference point. Military inertial navigation
systems manage drift by validating location data with GPS. When GPS is unavailable, the system
begins to drift. In our case, however, we seek to mitigate the orientation drift of the cube and not
the position drift. For this we introduce the final 3-DOF through a 3-axis magnetometer. By
measuring the Earth's magnetic field, the magnetometer offers a stable reference to determine the
cube’s true orientation relative to the magnetic poles. With data from all three sensors and the use
of appropriate filtering algorithms, sensor drift can safely be ignored.

7.2. IMU Selection

The technical specifications of these sensors are equally important. ETH Zurich’s Cubli used an
ADXL345 accelerometer from Analog Devices and IDG-500 and ISZ-500 gyroscopes from
InvenSense [8]. The ADXL345 is a 3-axis digital accelerometer with a full-scale range of ±2g
and a maximum sampling rate of 3200 Hz [9]. The IDG-500 is a 2-axis digital gyroscope with a
full-scale range of 110°/s and a sensitivity of 9.1 mV/°/s [10]. The ISZ-500 is a single-axis
gyroscope with equivalent capabilities [11]. It is worth noting that Cubli did not implement a
magnetometer in their design. One possible reason for this could be attributed to short operating
times. A more likely reason, however, lies in the close proximity of the motors with the IMU. It
is possible that these motors interfered with the magnetometer and drowned out the sensing of
the Earth’s magnetic field. This theory would need to be confirmed with further testing.

Despite these challenges, the decision to use a 9-DOF IMU over a 6-DOF unit is justified, as the
cost difference is negligible and both sensor packages share the same form factor. Additionally,
the increase in data transmission size is minimal, with only 2 bytes required to transmit
magnetometer data. For our design, we prioritized selecting IMU units that were readily
available on campus. Initially, we selected the Bosch BNO055, as its performance is comparable
to the ADXL345 and the InvenSense gyroscopes used in Cubli. However, during testing, we
encountered a known issue where the BNO055 violates the I2C communication protocol when
interfacing with the ESP32 microcontroller. This incompatibility would require us to switch to a
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different microcontroller to resolve the issue. Instead, we transitioned to the InvenSense
MPU9250, which provides similar functionality and is fully compatible with the ESP32,
allowing us to move forward with the design without major changes to the system architecture.

7.3. System Modelling and Control

The Cubli utilizes six IMUs to accurately determine its orientation [8, 12]. In contrast, the design
implemented by REM-RC, which CUBEBAS replicates, employs only one IMU for achieving
self-balancing behavior [13]. This approach, however, lacks practicality, as the desired
equilibrium orientations are hardcoded into the microcontroller’s firmware. Consequently,
CUBEBAS can only maintain balance at predefined orientations rather than dynamically
adjusting to balance on any edge or corner.

This limitation raises an important question: how many IMUs are truly necessary to create a
system that can demonstrate similar capabilities to the Cubli? To explore this, the thesis
"Modeling and Non-Linear Attitude Control Utilizing Quaternions" by Fabio Bobrow provides
relevant insights [14]. Bobrow’s work demonstrates state estimation comparable to the Cubli,
relying on a single IMU for system modeling. However, it is crucial to note that this design does
not incorporate a braking mechanism, which is essential for enabling autonomous self-balancing.

Thus the final goal of this project is to validate and extend Bobrow’s system model and control
strategies while integrating a mechanism that allows for autonomous self-balancing behavior.
This effort seeks to refine the design of the Cubli by removing unnecessary complexities and
confirming the robustness of Bobrow’s modeling approach. By doing so, a more streamlined and
efficient system can be developed, enhancing performance while reducing necessary hardware.
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8. Conclusion

ToppleBot aims to create a scalable and adaptable robotic platform for autonomous
self-balancing behaviors, with significant progress made toward establishing its system
architecture. The selection of materials, motor control systems, and the development of an
effective braking mechanism are currently being explored to ensure the rover meets its
operational requirements.

Future steps will focus on refining these designs, validating the control algorithms through
simulation and physical testing, and ensuring the components can withstand real-world
conditions. The project’s success will hinge on achieving stable, autonomous balancing while
maintaining scalability, allowing for further adaptation and testing across different environments
and use cases. As development continues, frequent testing will be crucial to validate the system's
performance and the cube rover's capabilities.
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