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Introduction

Quadrotors are underactuated aerial vehicles with 6 DOF and 4 independent
thrust-producing motors.

Control Objectives:
Step Reference (new hover position):

Attitude: ts < 1 s, ess = 0 deg
Position: ts < 5 s, ess = 0 m

Ramp Reference (linear trajectory):
Position: ess = 0 m

Sinusoidal Reference (oscillatory trajectory):
Position: epeak < 0.05 m
Phase Lag: 𝜑 < 15◦ @ 1 rad/s
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Nonlinear Equations of Motion

The outer loop (position) system is governed by the following, where
¥p = [x, y, z]T is in the inertial frame.

m¥p = mg®z + IRB
BF (1)

Expressed in the body frame, the acceleration is as follows:

B¥a =
BF
m

+ BRIg®z − 𝝎 × Bv (2)

The inner loop (attitude) system is governed by the following, where
𝝎 = [p, q, r]T is in the body frame.

I ¤𝝎 = −𝝎 × I𝝎 + 𝝉 (3)
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Linearized Equations of Motion, Position

Linearized about a hover condition at [0, 0, 0]T , the position subsystems result
in (using Equations (1) and (2)):

Bax = −𝜃g (4)

Bay = 𝜙g (5)

¥z = 1
m
(mg − T) (6)

Linearization Assumptions:

First-order Taylor series expansion.

sin(𝜃) ≈ 𝜃, cos(𝜃) ≈ 1.

Neglecting higher-order terms: O(𝛿2).
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Linearized Equations of Motion, Attitude

Linearized about a hover condition at [0, 0, 0]T , the attitude subsystems result
in (using Equation (3)):

¥𝜙 =
𝜏𝜙

Ixx
(7)

¥𝜃 =
𝜏𝜃

Iyy
(8)

¥𝜓 =
𝜏𝜙

Izz
(9)

Linearization Assumptions:

First-order Taylor series expansion.

sin(𝜃) ≈ 𝜃, cos(𝜃) ≈ 1.

Neglecting higher-order terms: O(𝛿2).
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Open-Loop State Space Models
Outer State-Space Model

B ¤xI
B¥xI
B ¤yI
B¥yI
¤z
¥z


=



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





BxI
B ¤xI
ByI
B ¤yI
z
¤z


+



0 0 0
−g 0 0
0 0 0
0 g 0
0 0 0
0 0 1

m




𝜃

𝜙

mg − T

 (10)

Inner State-Space Model

¤𝜃
¥𝜃
¤𝜙
¥𝜙
¤𝜓
¥𝜓


=



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0





𝜃
¤𝜃
𝜙
¤𝜙
𝜓
¤𝜓


+



0 0 0
1

Iyy
0 0

0 0 0
0 1

Ixx
0

0 0 0
0 0 1

Izz



𝜏𝜃
𝜏𝜙
𝜏𝜓

 (11)
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Observability and Controllability

Investigating controllability and observability:

rank
(
Couter) = nouter, rank

(
Oouter) = nouter

rank
(
Cinner

)
= ninner, rank

(
Oinner

)
= ninner

where C and O are the controllability and observability Gramians,
respectively, and n is the number of states.

Therefore, each system is both controllable and observable.
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LQR Control Structure
Assuming full-state feedback (FSFB) for both the inner and outer loops:

uouter = −Kouterxouter =
[
𝜃des 𝜙des mg − T

]
uinner = −Kinnerxinner =

[
𝜏𝜃 𝜏𝜙 𝜏𝜓

]
The standard LQR design (without integral action) minimizes the following
cost function:

J =

∫ ∞

0

(
xTQx + uTRu

)
dt

The weighting matrices were defined as:

Qouter = diag(25, 5, 25, 5, 50, 10),
Router = diag(1000, 1000, 100),
Qinner = diag(5, 0.1, 5, 0.1, 2.5, 0.05),
Rinner = diag(30, 30, 3000).
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Proving Closed-Loop Stability

With a cascaded control structure, how can you prove stability? For a desired
hover condition (xdes = 0 ∈ R6×1), and ignoring frequency differences:

Using block diagram algebra, the following was derived:[
xo
xi

]
=

[
Ao − BoSKo BoNCi
−BiKiMKo Ai − BiKi

] [
xo
xi

]
(12)

MT =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 , S =


0 0 0
0 0 0
0 0 1

 , N =


1 0 0
0 1 0
0 0 0
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Proving Closed-Loop Stability, Cont.

Closed-Loop Poles:
The system has 12 closed-loop poles:

−995.42 −801.86 −40.19 −7.18
−4.71 −4.71 −3.09 + 0.39i −3.09 − 0.39i

−1.17 + 0.98i −1.17 − 0.98i −1.17 + 0.98i −1.17 − 0.98i


All poles have strictly negative real parts ⇒ asymptotically stable.

Estimated Settling Times:
x and y position dynamics (−1.17 ± 0.98i): ts ≈ 4

1.17 ≈ 3.42 s
z position (−3.09 ± 0.39i): ts ≈ 4

3.09 ≈ 1.29 s
𝜙, 𝜃 (−4.71): ts ≈ 4

4.71 ≈ 0.85 s
𝜓 (−7.18): ts ≈ 4

7.18 ≈ 0.56 s
Meeting Step Response Requirements!

Gabriel Rodriguez (ERAU) Quadrotor LQR May 13, 2025 10 / 20



The Linear Simulink Model
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Desired Hover (Step) Position Response
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Desired Hover (Step) Attitude Response
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Ramp Trajectory Position Response
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Ramp Trajectory Attitude Response
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Sinusoidal Trajectory Position Response
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Sinusoidal Trajectory Attitude Response
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Future Work Outline

1 Add Integral Action

ut = −Kxxt − Ki

∫ t

0
e𝜏 d𝜏

2 Develop Full Nonlinear Model
Extend system modeling beyond linearization to capture higher-order coupling and
actuator limits.

3 Train Neural Network on Residual Dynamics

xt+1 = f (xt, ut)︸   ︷︷   ︸
linear model

+ gt︸︷︷︸
nonlinear effects

+ ht︸︷︷︸
residual dynamics

ut = 𝜋LQR (et)︸     ︷︷     ︸
nominal controller

+ 𝜋l (et, uLQR,t)︸           ︷︷           ︸
NN correction

4 Prove NN Stability Using Lipschitz Constant

∥N (x1) − N (x2)∥ ≤ L∥x1 − x2∥, ∀x1, x2

Bound residual policy behavior and incorporate into Lyapunov-based analysis.
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Future Work Status

1 Add Integral Action: Not Started
2 Develop Full Nonlinear Model: In Progress

3 Train Neural Network on Residual Dynamics: Loss Function
Developed

L =

T∑︁
t=0

xnonlinear
t − xlinear

t
2

4 Prove NN Stability Using Lipschitz Constant: Not Started
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