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Introduction

Quadrotors are underactuated aerial vehicles with 6 DOF and 4 independent
thrust-producing motors.

Control Objectives:
o Step Reference (new hover position):
o Attitude: #; < 1s, e =0deg
o Position: #;, < 558, e = 0m
o Ramp Reference (linear trajectory):
e Position: e;, = 0m
o Sinusoidal Reference (oscillatory trajectory):

o Position: epeax < 0.05m
o Phase Lag: ¢ < 15° @ [ rad/s
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Nonlinear Equations of Motion

The outer loop (position) system is governed by the following, where
p = [x,v,z]7 is in the inertial frame.

mp = mgz +'Rg"F ey
Expressed in the body frame, the acceleration is as follows:

BR
Bi= — +BRig7 —wxBv ()
m

The inner loop (attitude) system is governed by the following, where
= [p,q,r]T is in the body frame.

I =-woxlIow+T1 3)
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Linearized Equations of Motion, Position

Linearized about a hover condition at [0,0,0]7, the position subsystems result
in (using Equations (1) and (2)):

Bax = —0g “4)

Bay = ¢g &)
L1

t=—(mg-T) (6)
m

Linearization Assumptions:
@ First-order Taylor series expansion.
@ sin(f) = 0, cos(0) = 1.
@ Neglecting higher-order terms: O(62).
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Linearized Equations of Motion, Attitude

Linearized about a hover condition at [0, 0, 0]7, the attitude subsystems result
in (using Equation (3)):

v T_¢

¢ = I (7

. To

b=— ®)
Iyy

e T_¢,

w - Izz (9)

Linearization Assumptions:
@ First-order Taylor series expansion.
@ sin(6) = 0, cos(0) ~ 1.
@ Neglecting higher-order terms: O(62).
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Observability and Controllability

Investigating controllability and observability:

rank (C™') = noyer,  rank (O™ = noyger

rank (C "mer) = Mjpner,  Tank (Omner) = Nipner

where C and O are the controllability and observability Gramians,
respectively, and 7 is the number of states.

Therefore, each system is both controllable and observable.
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LQR Control Structure

Assuming full-state feedback (FSFB) for both the inner and outer loops:

Uouter = —KouterXouter = [edes Pdes Mg — T]

Winner = —KinnerXinner = [7'0 To Tl//]

The standard LQR design (without integral action) minimizes the following
cost function:

J= / (XTQX + uTRu) dt
0
The weighting matrices were defined as:

Qouter = diag(25, 5, 25, 5, 50, 10),
Router = diag(1000, 1000, 100),

Qinner = diag(5, 0.1, 5, 0.1, 2.5, 0.05),
Rinner = diag(30, 30, 3000).
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Proving Closed-Loop Stability

With a cascaded control structure, how can you prove stability? For a desired
hover condition (xges = 0 € R®*!), and ignoring frequency differences:

Using block diagram algebra, the following was derived:

Xo| [Ao-BoSK,  BoNG; | [xo (12)
Xj - —BiK]’MKO Ai—B]’Ki Xj
1 00 0 0 O 00 0 1 00
M=o 01 0 0 0/, S=|0 0 0|, N=|0o 1 0
00 0 0 0 O 0 0 1 000
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Proving Closed-Loop Stability, Cont.

Closed-Loop Poles:
The system has 12 closed-loop poles:

-995.42 —-801.86 -40.19 =7.18
-4.71 -4.71 -3.09+0.39; -3.09 -0.39i
-1.17+0.98; -1.17-0.98 -1.17+0.98; -1.17-0.98i

All poles have strictly negative real parts = asymptotically stable.

Estimated Settling Times:
@ x and y position dynamics (—1.17 + 0.98i): ¢, = % ~342s
@ zposition (-3.09 + 0.39): t, ~ 345 ~ 1.29's
e ¢,0(-4.71): t; ~ 471 ~0.85s
o Y (=7.18): ty = =45 18 ~ 0.56 s

Meeting Step Response Requirements!
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The Linear Simulink Model
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Hover Position Response
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Desired Hover (Step) Attitude Response

Hover Attitude Response
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Ramp Trajectory Position Response

Ramp Trajectory Response
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Ramp Trajectory Attitude Response

Ramp Trajectory Attitude Response
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Sinusoidal Trajectory Position Response

Sinusoidal Trajectory Response
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Sinusoidal Trajectory Attitude Response
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Future Work Outline

@ Add Integral Action
t
u = - xXt_Ki/ erdr
0

@ Develop Full Nonlinear Model
Extend system modeling beyond linearization to capture higher-order coupling and
actuator limits.

@ Train Neural Network on Residual Dynamics

X1 = f(xe ) + 8t + ht
N—— —— N——
linear model nonlinear effects  residual dynamics

u = mQr(e) +m(e,uLgr,,)

— —
nominal controller NN correction

© Prove NN Stability Using Lipschitz Constant
(IN(x1) = NIl < Lllxp —xall,  Vxp,x

Bound residual policy behavior and incorporate into Lyapunov-based analysis.
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Future Work Status

@ Add Integral Action: Not Started
© Develop Full Nonlinear Model: In Progress

© Train Neural Network on Residual Dynamics: Loss Function
Developed

L= i ”Xnonlinear _ Xlinear”2
t t
=0

© Prove NN Stability Using Lipschitz Constant: Not Started
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