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Abstract—Artificial intelligence (AI) and deep learning hold
vast potential across diverse domains. This project harnesses
AI for object detection and capture, focusing on free-falling
objects using an omnidirectional vehicle equipped with a singular
camera. The vehicle identifies the object’s position and adjusts
its trajectory for capture. In unrestricted testing, the vehicle
exhibited a success rate of 48%. While this level of success
serves as a proof of concept, hardware limitations hindered
further optimization. The project demonstrates the feasibility
of AI-driven object capture and highlights opportunities for
broader applications, including space debris capture, industrial
diagnostics, and defense systems. Despite hardware constraints,
the study lays groundwork for future developments in AI-
powered engineering solutions.

I. INTRODUCTION

This research project aimed to tap into the capabilities
of Artificial Intelligence (AI). The primary focus was on
exploring AI’s capabilities in detecting and capturing objects.
The result culminated in the use of AI for object detection,
coupled with an omnidirectional vehicle for interception of a
free-falling object. This approach to object capture appears to
be unprecedented in existing literature.

The team harnessed the full potential of available hardware,
capturing a free-falling stress ball with varying success. How-
ever, the implications of this research extend far beyond this
specific application. A similar vehicle could find application in
more intricate dynamic systems, ranging from defense systems
to space debris capture and other autonomous processes. These
systems could also serve as platforms for researching advanced
control systems to enhance efficiency, all powered by the
capabilities of AI.

Furthermore, the combination of AI-powered image classifi-
cation and object detection can be harnessed in complex envi-
ronments such as industrial plants. With slight modifications,
the current vehicle could perform diagnostics and maintenance
using classification and detection, showcasing the potential for
innovation in industrial processes.

In the pages that follow, a comprehensive account of the
research conducted is presented, detailing the methodologies
employed, the challenges encountered, and the outcomes
achieved. This report serves as a testament to the boundless
potential of AI-driven technologies and their transformative
impact on the future of engineering.

II. ENGINEERING DESIGN

As mentioned previously, an omnidirectional vehicle was
used in the current application of the object capture system.
Risking the admittance of key information by oversimplifica-
tion, an overview of the current system can be described as
follows: A camera and computer onboard the vehicle detected
the ball through AI while a control algorithm on the same
onboard computer controlled the movement of the vehicle
towards the object’s landing position. The first and most
challenging aspect of the task was to detect the ball.

A. Object Detection

The main reason the Jetson Nano was chosen was for
its AI and deep learning capabilities, particularly its real-
time inferencing abilities. These are powered by accelerated
software, with all computing taking place on the edge. This
project used a pre-trained object detection model that was
initially trained on a broad dataset and fine-tuned to our needs
through a method known as transfer learning. This learning
process necessitated a custom dataset, requiring the team
to gather thousands of images similar to those the onboard
camera would see.

After taking several thousand images, they were uploaded to
Roboflow, where the images were annotated, that is, manually
inputted bounding boxes around the object in each image.
Following this, a Convolutional Neural Network (CNN) was
trained on the new dataset using a method called supervised
learning. This training enabled the CNN, which works similar
to a human brain, to establish a relationship with both the class
of the object and its coordinates within the frame.

As a result, our system became fine-tuned to our specific
case and was now able to make reasonably accurate predictions
about the object’s position on never-before-seen data, such
as a live feed. After fine-tuning, the model was exported for
inferencing. This export process formats the model so that it
can be used in hardware-specific environments. Finally, with
the converted model, we were able to carry out the inference
process on the Jetson Nano. Fig. 1 presents a high-level view
of the object detection system.

Ultimately, catching a thrown ball that has one second of
airtime requires real-time inferencing capabilities. The Jetson
Nano accomplishes its real-time inferencing by leveraging
TensorRT, a machine learning framework from NVIDIA. This
framework optimizes neural networks for low latency and



Fig. 1. The model takes multiple hours to train itself on the custom data set,
where it makes connections similar to those made by a human brain.

high throughput using NVIDIA-specific GPUs, allowing for a
performance boost up to 36X faster than CPU-only platforms
and 6X faster than the PyTorch and TensorFlow frameworks
during inference [2]. Once real-time inference is achieved,
useful information about the object, such as class, confidence
level, bounding box location, and dimensions, can all be
extracted and used to control the vehicle.

B. Object Capture

With object detection established, the focus of this paper can
now move to the control of the vehicle. The goal of the control
algorithm implemented on the Jetson Nano was to position the
vehicle such that the net attached to it would be directly under
the object being detected. This way, the object would fall into
the net, resulting in successful capture. Providing it makes a
detection, the object detection system returns the bounding
box of the detection. This, and its properties are currently
the only inputs into the control algorithm. The first step in
creating the control algorithm was to relate the coordinate
system directions used to control the vehicle with the one
created by the camera. Fig. 2 portrays the camera’s coordinate
system as well as the vehicle’s, where C subscript denotes the
camera and the V subscript denotes the vehicle.

The error vector is initially defined within the camera’s
frame and is then converted to a measurable unit rather
crudely. To convert from pixels to a physical distance (mm),
the conversion is found using the diameter of the ball and the
width or height of the bounding box. This method would not
work with objects of unknown size and shape. Additionally,
the error value in the vehicle’s y-direction was subtracted by
the distance from the camera’s center to the net’s center to
ensure the control would place the vehicle such that the object
was above the net.

Fig. 2. Each wheel was numbered in accordance to the direction of the
vehicle’s reference frame, and was used to correctly implement the control
algorithm.

To convert the error values to engine inputs, two separate
PD controllers were integrated. One controlled the lateral,
positional movements of the vehicle, while the other controlled
the angular displacement. This was chosen because the vehicle
rotates easier than it translates, thus the coefficients would be
largely different and need to be separately controlled. From
the mathematical model of the vehicle, the necessary rotation
for each wheel in radians per second can be described by the
following equations:

Ψ1 =
1

R
(Vy + Vx − (L+H)ω) (1)

Ψ2 =
1

R
(Vy − Vx + (L+H)ω) (2)

Ψ3 =
1

R
(Vy − Vx − (L+H)ω) (3)

Ψ4 =
1

R
(Vy + Vx + (L+H)ω) (4)

Using these equations and normalizing the output, the
motors were controlled to position the vehicle correctly.

Working in tandem, the object detection and control al-
gorithm were implemented onto the Jetson Nano, using an
Adafruit FeatherWing as the motor driver for the 4 DC motors.
A battery housing and net attachment were 3D printed in
order to make the system streamlined and effective. The
omnidirectional vehicle then was able to detect the ball and
move according to the inputs created by the control algorithm.



III. RESEARCH METHODOLOGY

With the conceptual and technical framework of the object
capture system in place, our focus shifts to two key aspects:
assembling the essential custom dataset for the CNN and
assessing the vehicle’s performance.

A. Data Collection

The success of the project relied not only on the proper
implementation of AI and control algorithms but also on the
rigorous gathering and handling of data. The data collection
process was vital in training the system to detect and respond
to the object effectively. The following will outline the data
collection techniques utilized in the development and fine-
tuning of the omnidirectional vehicle.

The data collected for our simplified object capture task
were aimed at teaching the object detection algorithm, par-
ticularly the CNN, to recognize the appearance of the target
object and to determine the appropriate size of the bounding
boxes as the object moved through space. The size of the
bounding boxes was of particular importance because it was
used in our control algorithm as a conversion factor.

To achieve the desired level of accuracy, the camera was
positioned to resemble what the omnidirectional vehicle would
see, and videos of the ball being thrown in the air were
recorded. The videos were then separated frame by frame,
preparing them for annotation. Given that a rolling shutter
camera was used, the data had to be meticulously combed
through, and certain frames were deleted to avoid incorrect
sizing of the bounding boxes. This deletion was vital, as
objects moving at relatively high velocity could appear blurry
and take up more pixels within the frame. If the dimensions
of the bounding boxes were incorrect, the conversion factor
would also be incorrect, which could introduce noisy data and
send improper output signals to the motors.

Given our relatively simple object capture task, which
involved capturing a specific ball against a plain background,
we were able to optimize the detection algorithm for preci-
sion and speed. However, it is important to note that this
optimization came at the expense of robustness, specifically
with respect to other objects and backgrounds. To increase
robustness for our particular case, we utilized Roboflow to
create data augmentation files [6]. These data augmentation
files, constructed from our existing data, introduced rotation
to the existing images, providing more reference points that the
CNN could use for prediction. This data collection technique
also increased our dataset to a more appropriate size of 10,000
images for training.

To test the object detection algorithm, a new set of images
was recorded and ran through the object detection algorithm
from which we could gauge the success of the object detection.

B. Testing

Additionally, once we had implemented the full engineering
design, we aimed to test the object capture system. For this
purpose, we devised two different tests to capture data.

First, we performed a restricted test. We positioned the ball
within 1 meter of the vehicle, allowing the vehicle to reposition
itself under the ball before it was dropped. This test was
conducted to see if the vehicle was able to adequately position
itself to catch the ball.

Second, we performed a full test. We threw the ball in the air
and observed how the omnidirectional vehicle autonomously
positioned itself according to the control system’s output,
responding to the moving ball. This data allowed us to evaluate
whether the system was working properly for the set goal, and
ultimately, to determine the success of the project.

IV. DATA ANALYSIS

Having detailed our methodology and the specific ap-
proaches taken during data collection, we now shift our focus
to the analysis and evaluation of the results obtained.

A. Object Detection Results

As mentioned previously, additional images were taken to
test the object detection algorithm. From the test we were
able to find the precision, recall, and F1-Score for different
cases. Precision is the ratio of correctly predicted positive
observations to the total predicted positives, recall is the
ratio of correctly predicted positive observations to the total
available positive predictions, and the F1-Score is the weighted
average of Precision and Recall, which is used to calculate
accuracy. They are calculated in the following ways. Where,
True Positives (TP) are the data points in which the model
correctly identified the object, False Positives (FP) are when
the model incorrectly identified something as the object, and
False Negatives (FN) are when the model incorrectly identified
that the object was not present.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2 · Precision ·Recall

Precision+Recall
(7)

After performing a test on 1,910 new images and adjusting
the detection confidence threshold level to 50%, 40%, 30%,
and 20%, we calculated the Precision, Recall, and F1-Score.

TABLE I
OBJECT DETECTION TESTING AT DIFFERENT CONFIDENCE THRESHOLDS

Object Detection Tests
Confidence Threshold(%) Precision Recall F1 Score

50 0.99787 0.49162 0.65872
40 0.99007 0.62670 0.76755
30 0.97228 0.77120 0.86015
20 0.95349 0.90157 0.92680

The lowest confidence threshold had the highest F1-Score.

As demonstrated by the data in Table 1, when testing at a
50% confidence threshold (meaning any detection predicted
below a 50% threshold was discarded), the Precision of



the model was almost 100%. However, both the Recall and
F1-Score were significantly lower, leading to many missed
detections. Given that the ball is in the air for an average time
of one second and considering the object detection algorithm’s
performance of 40 frames per second, it becomes clear that not
only high precision but also high accuracy was needed. This
combination ensures that we detect the ball effectively within
the limited time window. To address this issue, the confidence
threshold parameter was lowered, leading to a slight decrease
in Precision but a massive gain in both Recall and F1-Score,
with all these metrics now above 90%.

We then proceeded with the analysis of test data for the
object capture system. For the restricted test (as seen in Table
2), 100% of the balls were perfectly caught and none were
completely missed. Considering the data, we can determine
that the vehicle’s object detection and control algorithms
are working well together, and the vehicle is reaching the
appropriate location that we determined for the ball within
the frame.

For the full test, the ball was thrown with a trajectory
following a narrow parabolic path, allowing for a realistic
test of the vehicle’s performance. Out of 100 throws, the data
(Table 3) was not as convincing as the restricted test. The
successful capture rate was 48%.

The results of our testing showcase both the strengths and
areas of improvement in the vehicle’s object detection and
capture system. While the high precision and accuracy in
controlled settings underline the system’s potential, the need
for variations in confidence thresholds and realistic throwing
tests reveal the complexities involved in optimizing both
accuracy of detection and real-time response.

Although the performance was satisfactory, it was heavily
influenced by budget constraints, leading to hardware limita-
tions such as the use of a smaller CNN and a PD control with-
out future predictions. These constraints profoundly affected
the vehicle’s capabilities, impacting factors such as accuracy,
reaction time, and resource utilization. These constraints and
limitations of our current system will be explained further,
while examining the potential future development of this
project.

TABLE II
RESTRICTED TEST OF OBJECT CAPTURE SYSTEM

Object Capture Tests
Result Percentage (%)

Caught in Air 100
Caught After Bounce 0

Rim Contact 0
Miss 0

The restricted test outcomes were perfect.

V. DISCUSSION

One of the primary constraints that shaped the performance
of our object capture system was the selection of hardware.
For our project, we decided to use NVIDIA’s Jetson Nano,
an affordable yet powerful machine designed for machine

TABLE III
FULL TEST OF OBJECT CAPTURE SYSTEM

Object Capture Tests
Result Percentage (%)

Caught in Air 31
Caught After Bounce 17

Rim Contact 33
Miss 19

The full test outcomes were less promising.

learning and deployment at the edge. Despite its impres-
sive handling and deployment of neural networks, the Jetson
Nano’s limited RAM memory of only 4 GB posed challenges,
particularly given that neural networks are memory-intensive
procedures. This constraint restricted our ability to implement
more intricate solutions for object capture, such as utilizing
larger, state-of-the-art object detection models like YOLO-
v8, adding a Kalman filter, or integrating additional neural
networks for object tracking and depth estimation to make
accurate future predictions. Such an object capture pipeline
could be implemented with newer, more advanced hardware
such as the Jetson Orin series.

The main limitations of our current hardware stem from the
accuracy of the object detection algorithm in more complex
testing environments, and the system’s inability to predict the
future position of the object. Currently, vibrations caused by
the movement of the vehicle, coupled with the inescapable
false positives stemming from the lowered confidence thresh-
old level, lead to choppy detection and reduced accuracy. This
situation results in incredibly noisy data being input into the
system, affecting not only the final application but also the
tuning of the PD control. As the team attempted to fine-tune
the two PD controllers that govern the system’s movement,
it was challenging to determine whether small inconsistencies
were due to chattering from detection or issues within the
control system itself.

Additionally, the system’s inability to predict future posi-
tions means that the system is always reacting to information,
rather than calculating the ball’s trajectory to intersect at the
most probable location. While we attempted to overcome these
limitations by adding a Kalman filter, the hardware’s memory
constraints delayed all processes, causing the system to be too
slow to react in a real-time scenario, and making this approach
unusable. Another avenue currently being explored for future
prediction is the integration of an Inertial Measurement Unit
(IMU) attached to the vehicle. This avenue is promising
due to the ability to track the position of the vehicle and
implementation of an extended space-time control.

Despite these hardware constraints and limitations, the sys-
tem performed better than expected, demonstrating that our
team’s proof of concept successfully implemented a low-cost
AI-powered object detection and capture system. This accom-
plishment suggests that the current system could be adapted to
support other specific functions, such as image classification
to identify the type of object or image the robot is viewing, as
well as depth estimation for depth sensing scenarios. Adjusting



our current system to one of these capabilities would require
additional training but could be implemented rather easily.

Additionally, mathematically modeling an omnidirectional
vehicle can be extremely difficult due to the high amounts
of slip experienced by each wheel, making a simulation of
the system hard to obtain. An improvement that could qualm
the object detection issues would not only help increase the
accuracy of detections, but also performance of the control
algorithm, creating a more accurate and rapid system. This
would result in more successful captures and would only need
to be facilitated by better hardware.

VI. RECOMMENDATIONS FOR FUTURE WORK

To combat the aforementioned deficiencies, there are multi-
ple options. The first, rather obviously, would be to implement
better hardware. Implementing enhanced hardware, including
CPUs and GPUs with updated architecture and increased
RAM, to allow for parallel execution of multiple AI and
control algorithms. This would further expand the robotic
capabilities. Secondly, implementation of Inertial Measure-
ment Units (IMUs) to provide precise information about the
orientation, acceleration, and rotational rate of the robot in
three-dimensional space. Lastly, another factor that would help
object detection specifically: incorporating a global shutter
stereo camera for more accurate 3D imaging and depth in-
formation. The global shutter stereo camera would take better
images of the ball as well as provide another dimension for
control through depth estimation.

VII. ACKNOWLEDGEMENT

The authors would like to thank Dustin Franklin for his
valuable insights and assistance in understanding the concepts
related to the training and deployment of object detection
algorithms. His open-source materials, available on GitHub,
were instrumental in the development of this research.

REFERENCES

[1] Addison Sears-Collins. ”Omni-Directional Wheeled Robot Simulation
in Python.” Available at: https://automaticaddison.com/ Created on: May
14, 2020.

[2] NVIDIA TensorRT. Available at: https://developer.nvidia.com/tensorrt?
ncid=so-yout-997504#cid=dl13 so-yout en-us Accessed on: August 7,
2023.

[3] Lady Ada. ”Adafruit Stepper + DC Motor FeatherWing.” Available at:
https://learn.adafruit.com Updated on: July 29, 2016.

[4] Dustin Franklin. NVIDIA Jetson Developer. GitHub Repository. Avail-
able at: https://github.com/dusty-nv Accessed: July 10, 2023.

[5] NVIDIA Developer. ”Jetson AI Fundamentals.” YouTube Playlist. Last
Updated: March 15, 2023. Available at: https://www.youtube.com/
playlist?list=PL5B692fm6--uQRRDTPsJDp4o0xbzkoyf8

[6] Roboflow. ”Roboflow Train.” Website. Accessed on: July 28, 2023.
Available at: https://roboflow.com/train


