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Abstract 
The McDonnell Douglas F-4 Phantom II is not only an iconic aircraft, but one that can be investigated for 

its desirable flight characteristics and evident success on the battlefield. Enclosed in this final report, the 

Terrific Trio details various investigations into the F4. First, the trim conditions are determined and tested 

in the full nonlinear model of the aircraft, evaluating the flight characteristics when set at trim conditions 

and when inducing oscillations using control surface and thrust doublets. The linearized longitudinal and 

lateral models of the aircraft are then developed, and their responses and simulations compared with the 

nonlinear model. Second, the aircraft modes are investigated, stability augmentation system goals are set, 

and longitudinal and lateral stability augmentation systems are created. They are first tested on the mode 

approximations, then the full linear models, and finally the nonlinear model of the aircraft. Third, four 

different autopilots are designed to control the aircraft. They include a roll control, heading hold, velocity 

hold, and altitude hold autopilots. They are first tested in isolation on the linearized models, then in 

conjunction on the linearized models. Lastly, the created autopilots were integrated into the nonlinear model 

and tasked with a waypoint following mission. After extensive tuning, the aircraft was not able to follow 

the waypoints, and needs better controls systems.  

 

Simulation Development and Open-Loop Analysis 
Aircraft Overview 
The McDonnell Douglas F-4 Phantom II, shown in Figure 3-1, is a name synonymous with power and Cold 

War might. Engineered with the need for a supersonic, all-weather interceptor for the US Navy, the F-4's 

design dared to be different. Its unconventional tandem seating and twin engines, while initially met with 

skepticism, proved to be its strength. Nicknamed the “Double Ugly” for its unconventional looks, it became 

a versatile warrior, adept at both air-to-air combat and air-to-ground attack, leaving its mark on numerous 

conflicts and earning a reputation as a workhorse of American airpower. 

Figure 3-1: The McDonnell Douglas F-4 Phantom II 
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With a max speed of Mach 2.2 [1], the F-4 dominated the skies with its speed and altitude advantage. Its 

long-range capabilities, fueled by internal tanks and the option for externals, ensured it could reach distant 

targets. Packed with cutting-edge avionics, including a powerful pulse-Doppler radar and advanced 

navigation systems [2], the F-4 pilots had a keen eye on the battlefield. This technological marvel could 

carry a diverse arsenal, from bombs and missiles to rockets, adapting to any mission thrown its way. 

However, the F-4 wasn't without its limitations. Its size made it a lumbering giant in dogfights, vulnerable 

to more agile opponents. The McDonnell Douglas F-4 Phantom II had its faults, including smoky engines 

and a hazardous, often fatal, stall-spin characteristic. Maintenance man-hours were high, and cockpit 

ergonomics were poor [3]. 

Despite these shortcomings, the F-4's legacy is undeniable. With over 5,100 produced, it holds the title of 

the most-produced American supersonic jet fighter. It served in the Vietnam War, Yom Kippur War, 

Falklands War, and Gulf War, shaping air combat doctrines and showcasing American technological 

prowess. Today, preserved F-4s stand tall in museums, silent testaments to an era when this "Double Ugly" 

soared high, forever etching its name in aviation history. In this project's context, the aircraft's key 

characteristics needed to be defined for simulation and analysis. The following are some key properties of 

the Phantom: 

Table 3-1: Key Mass and Geometry Properties of the McDonnell Douglas F-4 Phantom II 

VT = 1742.6 [ft/s] h = 55,000 [ft] 

W = 39000 [lbs] S = 530.0 [ft2] 

m = [slugs] b = 38.7 [ft] 

Ix = 25,000 [slug·ft2] c̅ = 16.0 [ft] 

Iy = 122,200 [slug·ft2] ρ = 2.865 x 10-4 [slug/ft3] 

Iz = 139,800 [slug·ft2] a = 968.1 [ft/s] 

Ixz = 2,200 [slug·ft2] M* = 1.80 

Table 3-2: Key Aerodynamic Coefficients of the McDonnell Douglas F-4 Phantom II 

𝐶𝐿0 = 0.010 𝐶𝐷𝑀𝑎𝑐ℎ = −0.03 𝐶�̅�𝑝 = 0.0 

𝐶𝐷0 = 0.0439 𝐶𝑚𝑀𝑎𝑐ℎ = −0.10 𝐶�̅�𝑟 = 0.0 

𝐶𝑚0 = 0.025 𝐶𝐿𝛿𝑒 = 0.25 𝐶�̅�𝑟 = 0.040 

𝐶𝐿𝛼 = 2.80 𝐶𝐷𝛿𝑒 = −0.15 𝐶�̅�𝑟 = −0.260 

𝐶𝐷𝛼 = 0.40 𝐶𝑚𝛿𝑒 = −0.380 𝐶𝑌𝛿𝑎 = −0.010 

𝐶𝑚𝛼 = −0.780 𝐶𝑌𝛽 = −0.70 𝐶𝑙𝛿𝑎 = 0.0150 

𝐶�̅��̇� = 0.17 𝐶𝑙𝛽 = −0.025 𝐶𝑛𝛿𝑎 = −0.0009 

𝐶�̅��̇� = −0.25 𝐶𝑛𝛽 = 0.09 𝐶𝑌𝛿𝑟 = 0.05 
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𝐶�̅�𝑞 = 1.30 𝐶�̅�𝑝 = 1.30 𝐶𝑙𝛿𝑟 = 0.0030 

𝐶�̅�𝑞 = −2.0 𝐶�̅�𝑝 = 1.30 𝐶𝑛𝛿𝑟 = −0.025 

𝐶𝐿𝑀𝑎𝑐ℎ = −0.10 --------------- --------------- 

 

F-4 Trim Characteristics and Nonlinear Simulation Development 
 

The F-4 was manufactured with two General Electric J-79-GE-15s, with a maximum thrust of 17,000 [lbs] 

each. Thus, taking this and the given trim condition parameters, mass/geometry properties, and aerodynamic 

coefficients, a model of the system could begin to be created. Given that only two of the five trim conditions 

were given, the remaining three values were found. Using the three longitudinal trim equations: 

 

𝑇∗ + (𝐶𝐿
∗𝑄𝑤
∗ 𝑆𝑤) sin(𝛼

∗) − (𝐶𝐷
∗𝑄𝑤

∗ 𝑆𝑤) cos(𝛼
∗) −𝑚𝑔𝑠𝑖𝑛(𝛼∗ + 𝛾∗) = 0 

 

−(𝐶𝐿
∗𝑄𝑤
∗ 𝑆𝑤) cos(𝛼

∗) − (𝐶𝐷
∗𝑄𝑤

∗ 𝑆𝑤) sin(𝛼
∗) +  𝑚𝑔𝑐𝑜𝑠(𝛼∗ + 𝛾∗) = 0 

 

𝐶𝑚
∗ 𝑄𝑤

∗ 𝑆𝑤𝑐̅ = 0 
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝐶𝑚

∗ = 0 

 

Where the trim lift, drag, and moment aerodynamic coefficients are defined as: 

 

𝐶𝐿
∗ = 𝐶𝐿0 + 𝐶𝐿𝛼  𝛼

∗ + 𝐶𝐿𝛿𝑒  𝛿𝑒
∗ 

𝐶𝐷
∗ = 𝐶𝐷0 + 𝐶𝐷𝛼  𝛼

∗ + 𝐶𝐷𝛿𝑒  𝛿𝑒
∗ 

𝐶𝑚
∗ = 𝐶𝑚0 + 𝐶𝑚𝛼  𝛼

∗ + 𝐶𝑚𝛿𝑒  𝛿𝑒
∗ 

 

The three nonlinear functions were solved using a MATLAB function for the remaining trim conditions. 

 

Table 3-3: Trim Conditions 

Trim Condition: γ* (degrees) VT* (m/s) α*(degrees) T* (lbs) δe
* (degrees) 

Value: 0 1742.6 3.4593 17732 -3.3312 

 

Using the given Simulink model, adjustments were made to model the F-4. First, the coefficients of lift, 

drag, and moment were edited to consider Mach effects. Second, the engine model was changed from a 

propeller to a jet engine. Last, the aerodynamic coefficients and mass/geometry properties were substituted 

in the MATLAB script. The simulation was then used for open-loop analysis in this configuration. 

Initial Trim Condition Test 
 

To verify the trim conditions tabulated in Table 3-3, a 100 second simulation was evaluated. The following 

plots characterize the trim simulation. The calculated longitudinal trim conditions and the result of their 

simulation are shown in Figures 3-2, 3-3, 3-4, 3-5, 3-6, and 3-7.  
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Figure 3-2: Translational Trim Velocities over Time. 

 

 

Figure 3-3: Angular Trim Velocities over Time. 
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Figure 3-4: Trim Attitude (Euler Angles) over Time. 

 

 

Figure 3-5: Trim Inertial (NED) Position over Time. 
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Figure 3-6: Inputs for Control Surfaces and Throttle. 

 

4 

 

Figure 3-7: The Horizontal Flight Path at Trim Conditions. 

 

After analyzing the 12 aircraft states and 4 control inputs, the calculated trim conditions were verified. All 

the aircraft states stayed roughly constant, other than the inertial position, which was expected to change. 

This was achieved without any changes in control input, meaning that trim has been achieved.  As expected, 

the translational trim velocity from Figure 3-2, is roughly constant, verifying the calculated trim conditions. 

The angular velocity shown in Figure 3-3 produces negligibly small oscillations in pitch rate. Figure 3-4 

shows the trim attitude, again with negligible oscillations. With small variations in pitch, the reason for the 
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slight altitude variation is evident; otherwise, the trim condition is held and verified. Disregarding the 

negligible change in altitude, the trim condition for inertial position from Figure 3-5, is again verified, 

traveling strictly North. The control inputs shown in Figure 3-6 are constant and only have nonzero values 

for the throttle and elevator controls, as expected.  

Nonlinear Simulations of Control Input Doublets 
 

Elevator Doublet 
After verifying the trim conditions, doublet simulations commenced. The first was an elevator doublet 

which was conducted by deflecting the elevator half a degree from trim in either direction for 2 seconds 

each. If the aircraft is dynamically stable, it will return to trim over the 500 second simulation. The results 

of the 500 second elevator doublet simulation are shown in Figures 3-8, 3-9, 3-10, 3-11, 3-12, and 3-13.  

 

 

Figure 3-8: Translational Velocities for the Elevator Doublet. 
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Figure 3-9: Angular Velocities for the Elevator Doublet. 

 

 

Figure 3-10: Aircraft Attitude for the Elevator Doublet. 
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Figure 3-11: Inertial Position for the Elevator Doublet. 

 

 

Figure 3-12: Control Inputs for the Elevator Doublet.  
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Figure 3-13: The Horizontal Flight Path for the Elevator Doublet. 

 

In summation, deduced from the various figures, the elevator doublet induced small oscillations in the pitch 

and pitch rate. The elevator doublet excited the aircraft’s short period mode, causing the oscillations. 

Essentially, the aircraft responded to the elevator control input with pitch, and the damping, primarily from 

the horizontal tail, allowed the aircraft to return to trim after the control input was returned to trim 

conditions.  

 

Quickly analyzing each figure, Figure 3-8 shows small oscillations in the longitudinal components of the 

translational velocity. This is followed by the translational velocity returning to approximately trim 

conditions. Figure 3-9 shows the same short period oscillations, shown in the pitch rate variation for the 

first 20 seconds, after which it returns to trim conditions. Meanwhile, the roll and the yaw remain constant 

and are not affected by the elevator doublet. This is further reinforced by Figure 3-10, which shows small 

oscillations in pitch in the first 20 seconds while the yaw and roll are unaffected. The aircraft's direction is 

unaffected, but the altitude changes due to the doublet and becomes relatively constant after 350s at 

approximately 55,000ft, as shown in Figure 3-11. This result indicates that the phugoid mode was also 

excited by the elevator doublet. The doublet performed on the elevator is shown in Figure 3-12, with the 

only variation being in the elevator deflection, as expected. 

 

Thrust Doublet 
 

Next, a thrust doublet was simulated. The throttle was increased from trim for 10 seconds and decreased 

from trim for 10 seconds. The plotted results of this simulation can be found in Figures 3-14, 3-15, 3-16, 3-

17, 3-18, and 3-19. 
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Figure 3-14: Translational Velocities for the Thrust Doublet. 

 

 

Figure 3-15: Angular Velocities for the Thrust Doublet.  
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Figure 3-16: Aircraft Attitude for the Thrust Doublet.  

 

 

Figure 3-17: Inertial Position for the Thrust Doublet. 
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Figure 3-18: Control Inputs for the Thrust Doublet.  

 

 

Figure 3-19: Inertial Position for the Thrust Doublet. 

 

The important characteristics of the thrust doublet are expressed in the longitudinal variations. Evidently, 

as seen in Figure 3-14, there are noticeable changes in the velocity due to the change in thrust from the 

throttle control. The components of the change in velocity are only in the body frame X and Z directions 

because we are assuming the thrust of each engine is equal. The thrust vector, due to the positive angle of 

attack, has a downward component; thus, propelling the aircraft upward in the inertial frame. The aircraft 

also experiences an increase in lift due to the increased dynamic pressure from the increased velocity. This 

increase in lift increases the pitch up moment. Thus, when the thrust is increased, the aircraft experiences 

an increase in pitch rate, and when the thrust is decreased, the aircraft experiences a decrease in pitch rate. 
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These effects can be seen in Figure 3-15, where the change in pitch rate is shown, and in Figure 3-16, where 

the change in pitch is shown. 

 

Due to the dynamic stability of the aircraft, the oscillatory reactions of aircraft from the thrust doublet were 

dampened and the aircraft returned to trim conditions with a very low amplitude, long period oscillation in 

pitch (and therefore altitude) that is negligible when considering whether the aircraft is trimmed or not. It 

is also important to note that in the thrust doublet, as seen in Figure 3-18, the only control variable 

manipulated was the throttle control.  

 

Aileron Doublet 
 

The third simulation carried out on the supersonic F-4 model was an aileron doublet. Translational and 

angular velocities, attitude and inertial position are plotted over time and shown in Figures 3-20, 3-21, 3-

21, 3-22 respectively. Figures 3-23, and 3-24 show the control input and resulting flight path. 

 

 

Figure 3-20: Translational Velocities for the Aileron Doublet. 

 



17 
 

 
 

 

Figure 3-21: Angular Velocities for the Aileron Doublet. 

 

 

Figure 3-22: Attitude for the Aileron Doublet.  



18 
 

 
 

  

Figure 3-23: Inertial Position for the Aileron Deflection. 

 

 

Figure 3-24: Control Inputs for the Aileron Deflection. 
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Figure 3-25: Horizontal Flight Path for the Aileron Doublet. 

 

As seen in Figure 3-20, the aileron doublet affected all the translational velocities. The plots indicate that 

the Dutch roll and long period modes were excited by the aileron deflection, but were damped out, retuning 

the aircraft to trim conditions. The resulting heading was offset from the original, causing an eastern flight 

path direction, as seen in Figure 3-25. Verified by Figure 3-24, the only change in control input was from 

the aileron doublet. The aileron doublet again verifies the dynamic stability of the aircraft and the initial 

trim conditions.  

Rudder Doublet 
 

The fourth simulation carried out on the supersonic F-4 model was a rudder doublet. Translational and 

angular velocities, attitude and inertial position were plotted over time and shown in Figures 3-26, 3-27, 3-

28, 3-29 respectively. Figures 3-30 and 3-31 show the control input and resulting flight path when the rudder 

was deflected. 



20 
 

 
 

 

Figure 3-26: Translational Velocities for the Rudder Doublet. 

 

  

Figure 3-27: Angular Velocities for the Rudder Doublet. 
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Figure 3-28: Aircraft Attitude for the Rudder Doublet. 

 

 

Figure 3-29: Inertial Position for the Rudder Doublet. 
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Figure 3-30: Control Inputs for the Rudder Doublet. 

 

 

Figure 3-31: Horizontal Flight Path for the Rudder Doublet. 

The rudder doublet caused oscillations from the Dutch roll mode, shown in the plot of translational 

velocities (Figure 3-26). The oscillations had small periods and were dampened out and reverted quickly to 

original conditions. The quick change in roll, as shown in Figure 3-31, caused the aircraft to turn West, and 

the dampening allowed it to maintain the heading rather than head back to the original. Due to the rudder 

doublet minimally affecting the pitch, the altitude remained relatively constant as shown in Figure 3-29, 

but there was a very small force upwards that caused a small, yet gradual increase in altitude. 
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Linear Model Development 
 

 Stability Derivatives 
 

To create the linearized longitudinal and lateral models of the F4, the stability derivatives needed to be 

calculated. Using MATLAB, the following stability derivatives were found: 

 

Table 3-4: Longitudinal Stability Derivatives 

D_u = 0.0109 lbf/s 

L_u = 0.0163 lbf/s 

M_u = 9.3372e-04 lbf/s 

D_q = 0 lbf*ft/rad/s 

L_q = 1.134 lbf*ft/rad/s 

M_q = -0.2767 lbf*ft/rad/s 

D_adot = 0 lbf*ft/rad/s 

L_adot = 0.1483 lbf*ft/rad/s 

M_adot = -0.0346 lbf*ft/rad/s 

D_a = 44.661 lbf*ft/rad 

L_a = 545.605lbf*ft/rad 

M_a = -23.4598 lbf*ft/rad 

D_de =  -28.4488 lbf*ft/rad 

L_de =  47.4147lbf*ft/rad 

M_de =  -11.4292 lbf*ft/rad 

T_dt = 28.0718 lbf/rad 

T_u = 0 lbf/ft/s 

X_u =  -.0099 lbf/ft/s 

X_a =  -11.6577 lbf/rad 

X_q = 0.0684lbf/rad/s 

X_de = 31.258 lbf/rad 

X_adot =  0.0089 lbf/rad 

X_w =  -0.0067 lbf/rad 

 

Z_u =  -0.0169 lbf/ft/s 

Z_a =   -547.306 lbf/rad 

Z_q =  -1.1319 lbf/rad/s 

Z_de = -45.6117 lbf/rad 

Z_adot =  -0.148 lbf/rad/s  

Z_w =  -0.3146 lbf/rad 

X_wdot =  5.1441e-06 lbf/rad/s 

Z_wdot =  -8.5096e-05  lbf/rad/s 

M_wdot = -1.9882e-05 lbf*ft/rad/s 

 

Table 3-5: Lateral Stability Derivatives  

l_p = -0.7911 lbf/rad/s 

Y_p = 0 lbs/rad/s 

N_p = 0 lbs*ft/rad/s 

l_r = 0.1582 lbf*ft/rad/s 

Y_r = 0 lbf/rad/s 

N_r = -0.1839 lbf*ft/rad/s 

l_b = -8.8898 lbf*ft/rad 

Y_b = -132.761 lbf/rad 

N_b = 5.7231 lbf/rad 

l_dr = 1.0668 lbf*ft/rad 

Y_dr = 9.4829 lbf/rad 

N_dr = -1.5897 lbf*ft/rad 

l_da = 5.3339 lbf*ft/rad 

Y_da = -1.8966 lbf/rad 

N_da = -0.0572 lbf*ft/rad 

l_v = -0.0051 lbf/s 

Y_v = -0.0763 lbf/ft/s 

N_v = 0.0033 lbf/s 

  

Longitudinal Linearized Model 
 

The longitudinal stability derivatives shown in Tables 3-4 could formalize the A and B matrices for the 

longitudinal model.  

 

𝐴𝐿𝑂𝑁𝐺 = [

−0.0099 −0.0067 −105.1 −32.14
−0.0169 −0.3146 1739.4 −1.943

9.3406𝑒 − 04 −0.0135 −0.3112 3.862𝑒 − 05
0 0 1 0

] 
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𝐵𝐿𝑂𝑁𝐺 = [

31.3722 28.0718
−45.7745 0
−11.4700 0

0 0

] 

 

Finding the eigenvalues of the A matrix, the long period and short period were found to be stable. The 

following are the resulting eigenvalues of the longitudinal model: 

 

𝜆1,2 = −0.3126 ± 4.8594𝑖 

𝜆3,4 = −0.0064 ± 0.0257𝑖 

 

Evidently, the first two eigenvalues correspond to the short-period mode, while the other two eigenvalues 

correspond to the long-period (phugoid) mode. The corresponding mode frequencies and damping ratios 

are the following: 

 

𝜔𝑆𝑃 = 4.869 [
𝑟𝑎𝑑

𝑠
] , 𝜁𝑆𝑃 = 0.064 

𝜔𝐿𝑃 = 0.02646 [
𝑟𝑎𝑑

𝑠
] , 𝜁𝐿𝑃 = 0.241 

 

These frequencies and damping ratios correspond to Level 1 flying qualities in the long period/phugoid 

mode and Level 4 flying qualities in the short period mode. This can be due to normal shocks and the like 

at supersonic conditions. The following figure plots the longitudinal eigenvalues on real and imaginary 

axes. Due to their negative real part, which is apparent in the figure, both modes are stable. As expected, 

the short period has a larger imaginary part, resulting in a higher frequency.  

 

 
Figure 3-32: Longitudinal Eigenvalues 

 

Lateral Linearized Model 
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Using the stability derivative found in Table 3-5, the resulting A and B matrices of the linearized lateral 

model are the following: 

 

𝐴𝐿𝐴𝑇 =

−0.0763 105.1486 −1.739𝑒 + 03 32.14
−0.0048 −0.7922 0.1422 0
0.0032 −0.01247 −0.1817 0
0 1 0.0605 0

 

 

𝐵𝐿𝐴𝑇 =

−1.8966 9.4829
5.3362 0.982
0.0267 −1.5751
0 0

 

 

All the lateral modes were found to be stable in finding the eigenvalues of the A matrix. The following are 

the resulting eigenvalues of the lateral model: 

 

𝜆1,2 = −0.1371 ± 2.4669𝑖 

𝜆3 = −0.7744 

𝜆4 = −0.0018 

 

Evidently, the first two eigenvalues correspond to the Dutch roll mode, while the third applied to the roll 

mode, and the fourth to the spiral mode. The corresponding Dutch roll mode frequency, Dutch roll mode 

damping ratio, roll time constant, and time to half amplitude are the following: 

 

𝜔𝐷𝑅 = 2.471 [
𝑟𝑎𝑑

𝑠
] , 𝜁𝐷𝑅 = 0.055 

𝜏𝑅 = 1.291 [𝑠] 

𝑇1/2 = 388.43 [𝑠] 

 

The Dutch roll's frequency and damping ratio correspond to Level 2 flying qualities. The roll time 

constant and time to half amplitude correspond to Level 1 and Level 1 flying qualities for the roll mode 

and spiral mode, respectively. The following figure plots the lateral eigenvalues on real and imaginary 

axes. Due to their negative real part, which is apparent in the figure, both modes are stable. 
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Figure 3-33: Lateral Eigenvalues  

 

Linearized Simulations of Control Input Doublets 
Elevator Doublet 
 

First, the linear model was used to estimate the response from the elevator doublet. The following are the 

resulting plots for the 4 longitudinal states and 2 longitudinal controls.  

 
Figure 3-34: Elevator Doublet Body X and Z Velocities 
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As seen in Figure 3-34, the elevator doublet induced oscillations in the body XB and ZB velocities. The 

aircraft, as expected, returns to trim after some time due to the stability of the short period and long period 

modes.  

 

 
Figure 3-35: Elevator Doublet Pitch Rate 

 

Oscillations in the pitch rate, as seen in Figure 3-35 were also induced by the elevator doublet and were 

damped out due to the aircraft’s dynamic stability.  

 

 
Figure 3-36: Elevator Doublet Pitch 

 

As expected, the elevator doublet also induced oscillations in the pitch that were also damped out. The 

following figure plots the control inputs into the system. The 0.5˚ deflections are confirmed by Figure 3-

37. 
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Figure 3-37: Elevator Doublet Control Inputs 

 

To aide in comparison between the linearized longitudinal model and the full nonlinear model, the 

simulations were superimposed in the following plots. Yaw is not included in the linearized models, so 

there will be no estimate for it in the plots.  

 

 
Figure 3-38: Elevator Doublet Linear and Nonlinear Translational Velocities 

 

As seen in Figure 3-38, the nonlinear and linear simulations produced similar results to the elevator 

doublet. One interesting difference is that the phugoid mode is damped out slower in the nonlinear model 

than the linear model. In the context of application of these linearized models for some sort of control it is 

most important that the short period mode is accurately modeled as the pilot will have more time to input 

controls to stop the phugoid mode seen in the nonlinear model. 
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Figure 3-39: Elevator Doublet Linear and Nonlinear Angular Velocities 

 

Again, as seen in Figure 3-39, the linear and nonlinear models see good agreement in their response to the 

elevator doublet. It is important to note that the lateral linearized model is not accounted for because there 

will not be any significant lateral responses to elevator deflection. The same agreement can be found in 

Figure 3-40.  

 

 
Figure 3-40: Elevator Doublet Linear and Nonlinear Attitude Responses 

 

To ensure that the same control inputs were seen by both simulations, the control inputs were plotted.  
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Figure 3-41: Elevator Doublet Linear and Nonlinear Control Inputs 

 

 

Thrust Doublet 
 

The linearized longitudinal model was also used to predict the response to a thrust doublet. The following 

are the resulting plots for the 4 longitudinal states and 2 longitudinal controls.  

 

 
Figure 3-42: Thrust Doublet Linear Translational Velocities 

 

As shown in Figure 3-42, only very small variations in the body X and Z velocities were produced.  
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Figure 3-43: Thrust Doublet Linear Angular Velocity 

 

The thrust doublet did induce oscillations in the pitch rate. 

 

 
Figure 3-44: Thrust Doublet Linear Attitude Responses 

 

Finally, the control inputs for the thrust doublet were plotted. 
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Figure 3-45: Thrust Doublet Control Inputs 

 

As in the case for the elevator doublet, the thrust doublet responses for the nonlinear and linear cases were 

superimposed in the following plots. 

 

 
Figure 3-46: Thrust Doublet Nonlinear and Linear Translational Velocities 
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Figure 3-47: Thrust Doublet Nonlinear and Linear Angular Velocities 

 

From Figures 3-46 and 3-47, it is evident that the linearized longitudinal model does not do well to 

simulate the phugoid mode induced by the thrust doublet. This is similar to the elevator doublet case. 

Again, it is important to note these are small amplitude oscillations with low frequencies, allowing the 

pilot plenty of time to input control.  

 

 
Figure 3-48: Thrust Doublet Nonlinear and Linear Angular Velocities Attitude Response 

 

Finally, the control inputs were plotted.  
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Figure 3-49: Thrust Doublet Control Inputs 

 

Evidently, the inputs were the same for the nonlinear and linear simulations. 

 

 

Aileron Doublet 
 

The following plots show the linearized lateral model responses to an aileron doublet.  

  

 
Figure 3-50: Aileron Doublet Linear Translational Velocity 

 

The aileron doublet, inducing Dutch roll dynamics, causes oscillations in the body Y-velocity.  
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Figure 3-51: Aileron Doublet Linear Angular Velocities 

 

Oscillations are also apparent in the roll and yaw rate. 

 

 
Figure 3-52: Aileron Doublet Linear Attitude Responses 

 

Again, to verify the control inputs, they were plotted.  
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Figure 3-53: Aileron Doublet Control Inputs 

 

As was done for the elevator and thrust doublets, the nonlinear and linear dynamics were superimposed.  

 

 
Figure 3-54:  Aileron Doublet Nonlinear and Linear Translational Velocities 
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Figure 3-55: Aileron Doublet Nonlinear and Linear Angular Velocities 

 

 
Figure 3-56: Aileron Doublet Nonlinear and Linear Attitude Responses 
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Figure 3-57:  Aileron Doublet Nonlinear and Linear Control Inputs 

 

The simulation response comparisons found in Figures 23, 24, and 25 point to an interesting shortcoming 

in the linearized lateral model. Dutch roll causes oscillations not only in the lateral state variables, but 

also in the longitudinal state variables. Thus, since the linearized lateral model does not consider the 

longitudinal responses, they are completely left out by the simulation. For those that it did simulate, 

however, there was good agreement between the linear and nonlinear models.  

 

Rudder Doublet 
 

The following plots show the linearized lateral model responses to a rudder doublet. 
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Figure 3-58: Rudder Doublet lateral translational velocity 

 

The rudder doublet causes oscillations in the body Y-velocity, as shown in Figure 3-58. 

 

 

 
Figure 3-59: Rudder Doublet Lateral Angular Velocity 

 

There are also oscillations that can be seen in the roll and yaw rate as shown in Figure 3-59. 

 

 
Figure 3-60: Rudder Doublet Lateral Attitude Response 
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The rudder doublet causes visible oscillations in the roll angle which finally stabilizes as shown in Figure 

3-60. 

 

 
Figure 3-61: Rudder Doublet Control Inputs 

 

The control inputs were then plotted as shown in Figure 3-61. 

 

 
Figure 3-62: Rudder Doublet Nonlinear and Linear translational velocities 

 

The next few graphs are the product of superimposing the nonlinear and linear dynamics.  
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Figure 3-63: Rudder Doublet Nonlinear and Linear angular velocities 

 

 
Figure 3-64: Rudder Doublet Nonlinear and Linear Attitude Responses 
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Figure 3-65: Rudder Doublet Control Inputs 

 

In Figures 3-62, 3-63, 3-64, and 3-65, we can see that the thrust doublet only causes oscillations in the 

lateral state variables for the linear model, but the nonlinear model shows the effects on the longitudinal 

state variables as well. For the lateral state variables, the linear and nonlinear models agree well. 

Stability Augmentation System 
Open-Loop and Closed-Loop Comparison 
 

After first investigating the open-loop linear longitudinal and lateral models, the team set out to create a 

stability augmentation system. This system is a feedback control system. To create this system, goals for 

its performance were set. 

 

Table 4-1: Open-Loop Flying Qualities 

Mode: Flying Quality Level 

Phugoid 1 

Short Period 3 

Dutch Roll 2 

Roll 1 

Spiral 1 

 

As directed, control goals were determined based on the flying qualities of the open-loop system. The 

phugoid mode, since it was already Level 1, was only slightly improved by increasing the damping ratio 

by 10%. The short period mode, since it was Level 3, was improved to Level 1 conditions by bringing the 

damping ratio to an increased value and keeping the frequency constant. Like the short period mode, the 

Dutch roll needed to be improved to Level 1 conditions. To complete this, the damping ratio was 
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increased, and the frequency was held constant. For the roll mode, since it was already Level 1, no 

changes were made. The spiral mode, on the other hand, was improved to have a shorter time to half 

amplitude. The following table contains the desired mode parameters. 

  

Table 4-2: Desired Closed-Loop Mode Values 

Mode: Open-Loop Value Closed-Loop Desired Value 

Phugoid ζLP = 0.241 ζLP = 0.2656 

Short Period ζSP = 0.064 ζSP = 0.3500 

Dutch Roll ζDR = 0.055 ζDR = 0.0900 

Roll τR = 1.2914 [s] τR = 1.2914 [s] 

Spiral T1/2 = 388.430 [s] T1/2 = 10 [s] 

 

To achieve these goals, the desired damping ratios and frequencies were used to calculate the desired 

eigenvalues. 

Resulting Longitudinal and Lateral Stability Augmentation Systems 
 

Then, using the Bass-Gura method, the gain matrices for both the longitudinal and lateral models were 

found. The rudder and aileron were weight based on their maximum deflection. The following are the 

calculated gain matrices: 

 

𝐾𝐿𝑂𝑁𝐺 = [
1.9778𝑒 − 06 4.1770𝑒 − 05 −0.2429 −0.0106

0 0 0 0
] 

 

𝐾𝐿𝐴𝑇 = [
−2.6456𝑒 − 07 0.0230 −0.0482 0.0164
−3.1747𝑒 − 07 0.0276 −0.0579 0.0197

] 

 

Using these gain matrices, the respective mode dynamics could be found for the closed-loop system. This 

was done by finding the eigenvalues of [A-BK] and calculating the corresponding parameters. 

 

Table 4-3: Oscillatory Modes 

Mode ξ (open) ξ (closed) ωn (open) [rad/s] ωn (closed) [rad/s] 

Phugoid 0.2415 0.2656 0.0265 0.0265 

Short Period 0.0642 0.3500 4.8695 4.8695 

Dutch Roll 0.0555 0.0900 2.4707 2.4707 

 

Table 3-4: Non-Oscillatory Modes 

Mode T1/2 (open) [s] T1/2 (closed) [s] τR (open) [s] τR (closed) [s] 

Spiral 388.43 10.000 - - 

Roll - - 1.2914 1.2914 

 

After analyzing the closed-loop system it is apparent that the gain matrices are correct because they return 

the same mode values as the desired ones. The benefits of the new mode dynamics will become apparent 

in the following simulations.  
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Linear Open-Loop and Closed-Loop Simulations 

 

Yaw Rate Disturbance 
 

First, the lateral case was determined by setting the IC to: 

{Δv  Δp Δr ΔΦ}T={0 0 2deg/s 0}T 

These initial conditions result in the following figures.  

 
Figure 4-1: Linear Yaw Rate Disturbance Translational Velocities 

Figure 4-1 demonstrates how the closed-loop system achieves a more dynamically stable lateral response, 

and a more desirable transient response than the open-loop system. The closed-loop configuration exhibits 

a lower settling time, meaning it dampens oscillations quickly to reach a steady state velocity (v = 0 

[ft/s]). Additionally, the closed-loop response not only settles faster, but also has a lower amplitude of 

oscillations, indicating less pronounced deviations from the trim lateral velocity. 
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Figure 4-2: Linear Yaw Rate Disturbance Angular Velocities 

Figure 4-2 shows that while both configurations experience similar oscillation amplitudes, the closed-loop 

system achieves stabilization significantly faster. This implies that the control system effectively reduces 

unwanted rolling (p) and yawing (r) motions as a result of the Dutch roll mode, allowing the aircraft to 

reach a steady state quicker compared to the uncontrolled (open-loop) scenario.  

 
Figure 4-3: Linear Yaw Rate Disturbance Attitude 

The closed-loop system's advantage extends to the aircraft's attitude, for the lateral case. Although both 

open-loop and closed-loop configurations exhibit oscillations in the roll angle due to Dutch roll, Figure 4-

3 demonstrates a clear difference. The closed-loop system's attitude oscillations settle to zero much faster 

than the open-loop system's oscillations, and trends towards zero roll angle much faster. The changes 

made to the Dutch roll dampen out the oscillations, and the decrease of time to half-amplitude in the roll 

mode quickly returns the aircraft to wings level. Overall, this behavior reinforces the effectiveness of the 

feedback control system. 
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Figure 4-4: Linear Yaw Rate Disturbance Control Inputs 

The control surface deflections in the lateral maneuver further highlights the role of the closed-loop 

system. Unlike the open-loop scenario, where both the aileron and rudder remain at zero deflection 

throughout due to no pilot input, the closed-loop system exhibits controlled oscillations in both control 

surfaces. This is shown in Figure 4-4. These oscillations suggest the control system actively adjusts the 

aileron and rudder to counter any deviations. This achieves the desired lateral movement. Importantly, 

these oscillations eventually dampen out, indicating the control system's success in stabilizing the aircraft, 

and returning to trim conditions. 

 

Pitch Rate Disturbance 
 

Now, for the longitudinal case, setting the initial conditions to the following: 

 

{Δu  Δw Δq Δϴ}T ={0 0 2deg/s 0}T 

 

The following plots were obtained from the above equation. 

 



47 
 

 
 

 
Figure 4-5: Linear Pitch Rate Disturbance Translational Velocities 

As seen in Figure 4-5, the aircraft simulation exhibited similar translational velocity responses in the X-

body frame direction (u) between the open-loop and closed-loop scenarios when started with an initial 

pitch rate. The small difference seen is due to the 10% increase in damping ratio for the long period mode. 

Conversely, the translational velocity in Z-body frame direction (w) showed more discrepancies between 

the open-loop and closed-loop cases because the short period mode was significantly affected by the 

control system to change the flying qualities from Level 3 to Level 1, and the short period mode affects w 

more than u traditionally. The open-loop results for w had a slightly higher amplitude than the closed-loop 

results, and a longer settling time as opposed to the closed-loop results. This points to increased damping 

and better flying qualities in the closed-loop system, as expected. 

 
Figure 4-6: Linear Pitch Rate Disturbance Angular Velocities 

As shown in Figure 4-6, the closed-loop system stabilizes faster than the open-loop system. The 

oscillations in q are mainly due to the short period mode, thus the increased damping improves the short 
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period mode flying qualities. This essentially means that the control chosen in the closed-loop system is 

working.  

 
Figure 4-7: Linear Pitch Rate Disturbance Attitude 

Similarly, Figure 4-7 shows the pitch against time in both the closed and open-loop systems, with the 

open-loop system having a higher amplitude and a longer time to dampen and stabilize, further showing 

the effectiveness of the closed-loop system, especially in damping out the short period mode.  

 
Figure 4-8: Linear Pitch Rate Disturbance Control Inputs 

Figure 4-8 shows that in the longitudinal case, the control inputs differed significantly between the 

closed-loop and open-loop systems. For the open-loop scenario, the elevator is kept at a trim deflection of 

-3.3 degrees, and the thrust is kept at trim condition. In the closed-loop system, the elevator varies from 

trim to damp out oscillations, while the thrust stays constant, as it was set to using the g matrix. 
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Nonlinear Open-Loop and Closed-Loop Simulations 
 

The stability augmentation systems for the longitudinal and lateral models were implemented into the 

nonlinear simulation, creating a closed-loop feedback control system. Using the new closed-loop model 

and the previous open-loop model, the results could be compared and the effectiveness of the linear 

approximations for control can be investigated. Three different simulations were run, with different initial 

conditions a constant pilot inputs of trim conditions.   

 

Pitch Rate Disturbance 
 

First, the pitch rate was given an initial condition of 2 [deg/s]. This initial condition is expected to excite 

the short period and long period modes. The following plots compare the results of the closed-loop and 

open-loop systems to this initial condition.  

 

 
Figure 4-9: Nonlinear Pitch Rate Disturbance Translational Velocities 

The first plot shows the translational velocity responses for the open and closed-loop systems. They are 

very similar to what was seen for the linear longitudinal model, which suggests that over small 

disturbances from trim, the linear model is a reasonable assumption, even at supersonic conditions. Again, 

the long period mode dynamics are slightly improved by the slight increase in the desired damping ratio, 

as seen in the slightly different oscillations in u. Additionally, there is a large improvement in the short 

period dynamics, due to the large increase in the desired damping ratio from the feedback control system.  
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Figure 4-10: Nonlinear Pitch Rate Disturbance Angular Velocities 

The initial disturbance is made apparent by plotting the pitch rates against time, where the pitch rate has 

an initial value of 2 [deg/s]. It is also apparent, however, that due to improved short period dynamics, the 

oscillations induced by the disturbance are quickly damped out, at a much shorter settling time than the 

open-loop system with no feedback control. 

 

 
Figure 4-11: Nonlinear Pitch Rate Disturbance Attitude 

Again, the attitude plotted against time is very similar to the linear longitudinal model that was simulated 

with similar initial conditions. As expected, there are no changes in the lateral attitude values as the initial 

conditions induce a purely longitudinal response from the model. This is true for both the open and 

closed-loop models. Additionally, the short period mode is again shown to be damped adequately through 

the settling time seen in the plot of the pitch. 
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Figure 4-12: Nonlinear Pitch Rate Disturbance Inertial Position 

 

As expected, the north and east flight positions are not affected by only a longitudinal response. A 

response in the altitude is apparent, however, because of the long period mode. The oscillations, as 

shown, are over a very long period, allowing the pilot ample time to add control inputs. The closed-loop 

system also shows to have slightly smaller amplitude, showing a slight increase in the long period 

damping ratio. 

 

 

Figure 4-13: Nonlinear Pitch Rate Disturbance Control Inputs 

 

The control inputs show the difference between open-loop and closed-loop systems. Although the “pilot 

inputs” (the control history) are set to the same, constant value in both simulations, the closed-loop 

system adds inputs based on the state of the system. In this case, the closed-loop system only reacts with 
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elevator inputs, as the throttle is not used for longitudinal control, and there were no variances in the 

lateral state variables that would induce control inputs from the aileron and rudder.  

  

 
Figure 4-14: Nonlinear Pitch Rate Disturbance Control Inputs  

 

Lastly, the horizontal flight path remains straight due to no lateral control inputs or disturbances.  

Yaw Rate Disturbance 
 

Second, the yaw rate was given an initial condition of 2 [deg/s] for the open and close-loop systems 

applied to the nonlinear model. 

 

 
Figure 4-15: Nonlinear Yaw Rate Disturbance Translational Velocities 
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From the translation velocity responses to the yaw rate disturbance, there are multiple takeaways. The 

expected outcome of such a disturbance would be Dutch roll, but we can see that the Dutch roll also 

induces some other dynamics. When modeled in the linear system, the effects of Dutch roll on the 

longitudinal variables are ignored, but in this case, there are longitudinal effects from Dutch roll dynamics 

in the full model. It seems that the Dutch roll has induced some long period dynamics in u which are 

damped out more effectively by the closed-loop system than the open-loop system. Yet, the differences 

between the oscillations are too large to be accounted for only by the slight increase in the long period 

damping ratio. Thus, we can assume that the increase in stability in the lateral modes adds to the damping 

in u, and the oscillations present are not solely due to the phugoid mode. Overall, the feedback control 

system improved the response to the yaw rate disturbance across every direction. Yet, v did not see a large 

improvement in settling time, while w did. It can be assumed that the difference between the open-loop 

and closed-loop system for the lateral model is smaller than the difference in the longitudinal model 

because the Dutch roll, spiral and roll modes did not need as much improvement as the short period mode.  

 

 
Figure 4-16: Nonlinear Yaw Rate Disturbance Angular Velocities 

 

Again, it seems that the lateral modes are not as affected by the control system. While the roll and yaw 

rates settle faster with the control active, the differences are not as significant as in the pitch rate. It is 

again interesting that the yaw rate disturbance induces oscillations in the longitudinal variables, while the 

pitch rate disturbance did not induce oscillations in the lateral variables.  
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Figure 4-17: Nonlinear Yaw Rate Disturbance Attitude 

 

An interesting aspect of Figure 4-17 can be seen in the roll angle plot. It is evident that the control system 

has much faster convergence to a zero-roll angle, as expected. The yaw angle also converging to zero in 

the closed-loop system, while being seemingly unstable in the open-loop system. This is an important 

indication that the control system is working to return the aircraft to trim, and a large improvement from 

the open-loop system. 

 

 
Figure 4-18: Nonlinear Yaw Rate Disturbance Inertial Position 

 

Figure 4-18 again shows that the control system helps to return the aircraft to trim and keep its heading as 

well as altitude. Again, although altitude is a result of variations in longitudinal variables, the lateral 

disturbance still affects it, especially in the open-loop system. 
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Figure 4-19: Nonlinear Yaw Rate Disturbance Control Inputs 

 

The control inputs again show the expected, where the open-loop control inputs stay at trim, while the 

closed-loop ones change to damp oscillations and return the aircraft to trim. 

 

 
Figure 4-20: Nonlinear Yaw Rate Disturbance Horizontal Flight Path 

 

Lastly, the horizontal flight path also sees the same divergence from trim for the yaw angle as seen in 

other plots for the open-loop system.  The closed-loop system evidently returns to trim, at a similar 

heading. 

 

Pitch and Yaw Rate Disturbance 
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Lastly, the yaw and pitch rates were given an initial condition of 2 [deg/s] for the open and closed-loop 

systems applied to the nonlinear model. 

 

 
Figure 4-21: Nonlinear Pitch and Yaw Rate Disturbance Translational Velocities 

 

The nonzero pitch and yaw rate initial conditions excited all the modes, with the most prevalent reaction 

being the Dutch roll dynamics in both the open and closed-loop configurations. The oscillations in v are 

the largest among the translational velocities, with the closed loop having slight amplitude oscillations. It 

seems that the longitudinal modes are better controlled by the closed-loop system than the lateral modes.   

 

 
Figure 4-22: Nonlinear Pitch and Yaw Rate Disturbance Angular Velocities 
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The angular velocities show a similar trend, where the lateral variables are affected the most, suggesting 

that the control should be edited to have better lateral damping capabilities, specifically for the Dutch roll 

mode.  

  

 
Figure 4-23: Nonlinear Pitch and Yaw Rate Disturbance Attitude 

 

The attitude of the aircraft highlights the improvement of the control in the roll mode, bringing the aircraft 

to wings level. Additionally, the yaw angle is returned to zero in the close-loop while it is not in the open-

loop configuration. Thus, the lateral control system is working, but could be edited specifically for better 

Dutch roll dynamics. 

 

 
Figure 4-24: Nonlinear Pitch and Yaw Rate Disturbance Inertial Position 
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Through the inertial position, it is evident that the closed-loop system again brings the aircraft much 

closer to its initial heading as opposed to the open-loop system. The open-loop system diverges from the 

initial heading and would be undesirable.  

 

 
Figure 4-25: Nonlinear Pitch and Yaw Rate Disturbance Control Inputs 

 

The control inputs again act as expected, where the open-loop system control inputs stay at trim 

conditions, while the closed-loop system has variable control inputs and they eventually return to trim 

conditions.  

 

 
Figure 4-26: Nonlinear Pitch and Yaw Rate Disturbance Horizontal Flight Path 

 

Lastly, the closed-loop system again returns to a heading closer to trim, while the open-loop system 

diverges.  
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Autopilot Control Design 
Roll Control Autopilot 
 

The roll control autopilot was designed to use the aileron exclusively. Thus, the corresponding system 

transfer function was used, where the change of aileron is related to the resulting change in roll angle. The 

following system transfer function was produced using the previously calculated stability derivatives in 

MATLAB: 

 

𝐺ϕ(𝑠) =  
Δϕ(𝑠)

 Δ𝛿𝑎(𝑠)
=  

ℒ𝛿𝑎
𝑠2 − ℒ𝑝𝑠 

=  
5.334

𝑠2 − 0.7911𝑠
 

 

The team decided a PID controller would be best for the roll controller as it is the most important controller 

used for navigation. Using a PID would allow for the most tunability out of the options in the PID family 

and assure there would be no steady state error. The control goals were then established to find the PID 

control gains. For ease of tuning, the resulting system of questions was plugged into MATLAB, allowing 

for the desired values to be changed easily. After tuning, the following desired values were determined as 

appropriate: 

 

𝜁̅ = 0.415 
𝑦𝑖𝑒𝑙𝑑𝑠
→     30% 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 

𝑡𝑠 = 5 [𝑠𝑒𝑐] 
𝑦𝑖𝑒𝑙𝑑𝑠
→     �̅�𝑛 = 1.4458 [𝑟𝑎𝑑/𝑠] 

�̅�3 = −1.5(�̅�𝑛)(𝜁)̅ 
 

Note that the 3rd pole needed to be determined due to the use of a PID controller. The following control 

gains were determined, based on the desired values: 

 

𝐾𝑃,𝜙 = 0.5944 

𝐾𝐼,𝜙 = 0.3527 

𝐾𝐷,𝜙 = 0.2454 

 

Using the system transfer function, assuming a perfect actuator and sensor, and implementing a PID 

controller transfer function, the following closed-loop transfer functions were determined. 

 

𝐶(𝑠) =  
1.309𝑠2 + 3.17𝑠 + 1.881

𝑠3 + 2.1𝑠2 + 3.17𝑠 + 1.881
 

 

𝑊(𝑠) =  
5.334𝑠

𝑠3 + 2.1𝑠2 + 3.17𝑠 + 1.881
 

 

The resulting closed-loop poles were the following: 

 

𝜆1 = −0.9000 
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𝜆2,3 = −0.6000 ± 1.3154𝑖 

 

Using Final Value Theorem, the controller could be analyzed to assure there was no steady state error for a 

step roll command. Evaluating for a step command of 10 degrees: 

 

Δϕ𝑠𝑠(𝑡) = lim
𝑠→0
𝑠 𝐶(𝑠)Δϕ𝑐𝑜𝑚(𝑠) = lim

𝑠→0
 𝑠 (

1.309𝑠2 + 3.17𝑠 + 1.881

𝑠3 + 2.1𝑠2 + 3.17𝑠 + 1.881
)(
10

𝑠
)  

 

Δϕ𝑠𝑠(𝑡) = 10 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 
 

Knowing that the transfer function indicates zero steady-state error, a simulation could be done in the full 

linearized lateral model where the actuator is not assumed to be perfect, but the sensors are. The simulation 

was done for a commanded roll angle of 10 degrees, and the results were plotted. 

 

 
Figure 5-1: Roll Angle Response for a Commanded Roll Angle 
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Figure 5-2: Commanded and Actual Aileron Control Input 

 

Using the plots shown in Figure 5-1 and Figure 5-2, the maximum overshoot, maximum aileron 

deflection, settling time, and steady state error could be estimated as the following: 

 

𝑀𝑃 = 39.89 % 

𝛿𝑎,𝑚𝑎𝑥 = 19.6669 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 

𝑡𝑠 = 6.37 [𝑠] 

𝐸𝑠𝑠 = 0 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 
 

These transient parameters satisfied the team members, while keeping the aileron deflection under the 

maximum of 20 degrees. Thus, the team members moved to the next controller.  

Heading Hold Autopilot 
 

The sideslip control autopilot was designed to use the rudder exclusively. Thus, the corresponding system 

transfer function was used: 

 

𝐺β(𝑠) =  
Δβ(𝑠)

 Δ𝛿𝑟(𝑠)
=   

0.005452𝑠 + 1.591

𝑠2 + 0.2602𝑠 +  5.737
 

 

The team decided a PID controller would be best for the sideslip controller, again because of the tunability. 

The control goals were then established to find the PID control gains. For ease of tuning, the resulting 

system of questions was plugged into MATLAB, allowing for the desired values to be changed easily. After 

tuning, the following desired values were determined as appropriate: 

 

𝜁̅ = 0.216 
𝑦𝑖𝑒𝑙𝑑𝑠
→     50% 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 

𝑡𝑠 = 15 [𝑠𝑒𝑐] 
𝑦𝑖𝑒𝑙𝑑𝑠
→     �̅�𝑛 = 0.9259 [𝑟𝑎𝑑/𝑠] 

�̅�3 = −10 (�̅�𝑛)(𝜁)̅ 
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Note that the 3rd pole needed to be determined due to the use of a PID controller. After extensive tuning, the 

following control gains were determined, based on the desired values: 

 

𝐾𝑃,𝛽 = −2.5607 

𝐾𝐼,𝛽 = 1.0859 

𝐾𝐷,𝛽 = 1.3651 

 

Having a negative KP is normally not desired, but the team found that this was the only reasonable result 

for the PID sideslip controller. The controller tended to reach values unattainable by the actual aircraft due 

to rudder deflection limitations. Even in this extreme case, the rudder command still accumulates to a 

maximum value higher than what is capable of the aircraft. This can be explained by the trim conditions, 

where the aircraft is at supersonic conditions. It seems that the rudder at this trim condition has little control 

authority and could be part of the reason for the aforementioned characteristic to spin. Thus, using the 

system transfer function, assuming a perfect actuator and sensor, and implementing the PID controller 

transfer function, the following closed-loop transfer functions were determined. 

 

𝐶(𝑠) =  
0.007387𝑠3 + 2.142𝑠2 − 4.037𝑠 + 1.715

𝑠3 + 2.4𝑠2 + 1.657𝑠 + 1.715
 

 

𝑊(𝑠) =  
0.005411𝑠2 + 1.579𝑠

𝑠3 + 2.4𝑠2 + 1.657𝑠 + 1.715
 

 

The resulting closed-loop poles were the following: 

 

𝜆1 = −2.0000 

𝜆2,3 = −0.2000 ± 0.9041𝑖 

 

Using Final Value Theorem, the controller could be analyzed to assure there was no steady state error for a 

step roll command. Evaluating for a step command of 10 degrees: 

 

Δβ𝑠𝑠(𝑡) = lim
𝑠→0

𝑠 𝐶(𝑠)Δβ𝑐𝑜𝑚(𝑠) = lim
𝑠→0
 𝑠 (

0.007387𝑠3 + 2.142𝑠2 − 4.037𝑠 + 1.715

𝑠3 + 2.4𝑠2 + 1.657𝑠 + 1.715
)(
10

𝑠
)  

 

Δβ𝑠𝑠(𝑡) = 2 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 
 

Knowing that the transfer function indicates zero steady-state error, a simulation could be done in the full 

linearized lateral model where the actuator is not assumed to be perfect, but the sensors are. The simulation 

was done for a commanded sideslip angle of 2 degrees, and the results were plotted. 
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Figure 5-3: Sideslip Angle Response for a Commanded Sideslip Angle 

 

 

 
Figure 5-4: Commanded and Actual Rudder Control Input 

 

Using the plots shown in Figure 5-3 and Figure 5-4, the maximum overshoot, maximum aileron 

deflection, settling time, and steady state error could be estimated as the following: 

 

𝑀𝑃 = 62.42 % 

𝛿𝑟,𝑚𝑎𝑥 = 29.4275 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 

𝑡𝑠 = 14.9 [𝑠] 

𝐸𝑠𝑠 = 0.070 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 
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These transient parameters satisfied the team members, while keeping the rudder deflection under the 

maximum of 20 degrees for most of the simulation. Thus, the team members moved to integrating the two 

lateral controllers to perform a coordinated turn.  

 

Roll and Sideslip Control Autopilot 
 

With both the roll and sideslip controls created, they could then be tested together. As directed, a 

commanded roll angle was set with zero sideslip. These conditions, being that of a coordinated turn, are 

crucial for waypoint navigation. The roll angle command was set to 10 degrees, while keeping the sideslip 

at 0 degrees. The resulting simulation using the linearized lateral model was plotted and shown below. 

 

 
Figure 5-5: Coordinated Turn Sideslip Angle Response for a Commanded Sideslip Angle 
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Figure 5-6: Coordinated Turn Commanded and Actual Rudder Control Input 

 

 
Figure 5-7: Coordinated Turn Roll Angle Response for a Commanded Roll Angle 

 

 

 
Figure 5-8: Coordinated Turn Commanded and Actual Aileron Control Input 

 

As shown in the various plots, the aircraft rolls to the desired roll angle, and the sideslip control stabilizes 

to zero sideslip. Thus, the coordinated turn was completed and the roll and sideslip controls were successful. 

 

Altitude Hold Autopilot 
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The altitude hold was designed to use the elevator exclusively. Again, the corresponding system transfer 

function was used. Yet, for this control system, the longitudinal A and B matrices needed to be edited to 

include the altitude as one of the states. The altitude equation was first linearized, and then added to the A 

matrix. Since the altitude is not directly controlled by the thrust or elevator, a row of zeros was added to the 

B matrix. The following is the system transfer function for the altitude hold autopilot: 

 

𝐺h(𝑠) =  
Δh(𝑠)

 Δ𝛿𝑒(𝑠)
=   

47.58𝑠3 + 1.708𝑠2 − 5136𝑠 − 7.043

𝑠5 + 0.638𝑠4 + 23.72𝑠3 + 0.3035𝑠2 − 0.01661𝑠
 

 

Instead of assuming a perfect actuator, the following transfer function was used to represent the actuator 

dynamics, accounting for the need to flip the sign of the elevator for altitude control: 

 

𝐺a(𝑠) =  
−10

 s + 10
 

 

The Ziegler Nichols method was then used to find the ultimate gain and ultimate period, using the system 

and actuator transfer functions.  

 

𝐾𝑃𝑢 = 4.0908 × 10
−4 

𝑇𝑢 = 20.9929 [𝑠𝑒𝑐] 
 

A PID controller was then deemed accurate, after other controllers in the PID family were experimented on. 

The resulting PID gains were the following: 

 

𝐾𝑃,ℎ = 5.7271 × 10
−4 

𝐾𝐼,ℎ = 2.3384 × 10
−5 

𝐾𝐷,ℎ = 0.0018 

 

With these control gains, the closed-loop transfer functions become: 

 

𝐶(𝑠) =  
−0.8581𝑠5 − 0.3033𝑠4 + 92.6𝑠3 + 29.54𝑠2 − 1.241𝑠 − 0.001647

𝑠7 + 10.64𝑠6 + 29.24𝑠5 + 237.2𝑠4 + 95.65𝑠3 + 29.71𝑠2 − 1.241𝑠 + 0.001647
 

 

𝑊(𝑠) =  
47.58𝑠5 + 477.5𝑠4 − 5119𝑠3 − 5.137 × 104𝑠2 − 70.43𝑠

𝑠7 + 10.64𝑠6 + 29.24𝑠5 + 237.2𝑠4 + 95.65𝑠3 + 29.71𝑠2 − 1.241𝑠 + 0.001647
 

 

With the following corresponding poles: 

 

𝜆1 = −9.9940 

𝜆2,3 = −0.1174 ± 4.7503𝑖 

𝜆4,5 = −0.1805 ± 0.2846𝑖 

𝜆6 = −0.0469 

𝜆7 = −0.0014 

 

Using Final Value Theorem, the controller could be analyzed to assure there was no steady state error for a 

step altitude command. Evaluating for a step command of 10 feet: 
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Δϕ𝑠𝑠(𝑡) = lim
𝑠→0

𝑠 𝐶(𝑠)Δϕ𝑐𝑜𝑚(𝑠)  

 

Δϕ𝑠𝑠 = lim
𝑠→0
𝑠 (

−0.8581𝑠5 − 0.3033𝑠4 + 92.6𝑠3 + 29.54𝑠2 − 1.241𝑠 − 0.001647

𝑠7 + 10.64𝑠6 + 29.24𝑠5 + 237.2𝑠4 + 95.65𝑠3 + 29.71𝑠2 − 1.241𝑠 + 0.001647
)
10

𝑠
  

 

Δϕ𝑠𝑠(𝑡) = 10 [𝑓𝑡] 
 

 

Knowing that the transfer function indicates zero steady-state error, a simulation could be done in the full 

linearized longitudinal model. The simulation was done for a commanded change of altitude of 10 feet, and 

the results were plotted. 

 

 
Figure 5-9: Altitude Response for a Step Altitude Command 
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Figure 5-10: Elevator Control Inputs for a Step Altitude Command 

 

Using the plots shown in Figure 5-3 and Figure 5-4, the maximum overshoot, maximum aileron 

deflection, settling time, and steady state error could be estimated as the following: 

 

𝑀𝑃 = 35.41 % 

𝛿𝑒,𝑚𝑎𝑥 = 11.0880 [𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 

𝑡𝑠 = 20.36 [𝑠] 

𝐸𝑠𝑠 = 0 [𝑓𝑡] 
 

These transient parameters satisfied the team members, while keeping the elevator deflection under the 

maximum of 20 degrees. Thus, the team members moved to the next controller.  

 

 

 

Velocity Hold Autopilot 
 

The velocity hold was designed to use thrust exclusively. As with the prior controllers, the system transfer 

function was found: 

 

𝐺u(𝑠) =  
Δu(𝑠)

 Δ𝛿𝑇(𝑠)
=   

28.07𝑠3 + 17.63𝑠2 − 662.9𝑠 − 0.7382

𝑠4 + 0.638𝑠3 + 23.72𝑠2 + 0.3035𝑠 − 0.01661
 

 

Again, instead of assuming a perfect actuator, the following transfer function was used to model the actuator 

dynamics: 

 

𝐺a(𝑠) =  
10

 s + 10
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In addition to modeling for the actuator dynamics, this control also took into account the lag of the F4’s 

twin jet engines with the following transfer function: 

 

𝐺a(𝑠) =  
0.1

 s + 0.1
 

 

The Ziegler Nichols method was then used to find the ultimate gain and ultimate period, using the system, 

actuator, and engine lag transfer functions.  

 

𝐾𝑃𝑢 = 0.4036 

𝑇𝑢 = 5.9427 [𝑠𝑒𝑐] 

 

A PID controller was then deemed adequate, after other controllers in the PID family were experimented 

on. The resulting PID gains were the following: 

 

𝐾𝑃,𝑢 = 0.0484 

𝐾𝐼,𝑢 = 0.0034 

𝐾𝐷,ℎ = 0.0300 

 

With these control gains, the closed-loop transfer functions become: 

 

𝐶(𝑠) =  
0.8416𝑠5 + 1.888𝑠4 + 20.82𝑠3 + 32.15𝑠2 + 2.215𝑠 − 0.002507

𝑠7 + 10.74𝑠6 + 32.01𝑠5 + 242.4𝑠4 + 47.63𝑠3 + 32.62𝑠2 − 2.232𝑠 − 0.002507
 

 

𝑊(𝑠) =  
28.07𝑠6 + 301.2𝑠5 + 869.1𝑠4 + 6713𝑠3 + 655.5𝑠2 − 0.7382𝑠

𝑠7 + 10.74𝑠6 + 32.01𝑠5 + 242.4𝑠4 + 47.63𝑠3 + 32.62𝑠2 + 2.232𝑠 − 0.002507
 

 

With the following corresponding poles: 

 

𝜆1 = −9.92282 

𝜆2,3 = −0.3127 ± 4.8596𝑖 

𝜆4,5 = −0.0555 ± 0.3552𝑖 

𝜆6 = −0.0745 

𝜆7 = 0.0011 

 

Using Final Value Theorem, the controller could be analyzed to assure there was no steady state error for a 

step velocity command. Evaluating for a step command of 10 feet per second: 

 

 

Δϕ𝑠𝑠(𝑡) = lim
𝑠→0

𝑠 𝐶(𝑠)Δϕ𝑐𝑜𝑚(𝑠)  

 

Δϕ𝑠𝑠 = lim
𝑠→0
𝑠 (

0.8416𝑠5 + 1.888𝑠4 + 20.82𝑠3 + 32.15𝑠2 + 2.215𝑠 − 0.002507

𝑠7 + 10.74𝑠6 + 32.01𝑠5 + 242.4𝑠4 + 47.63𝑠3 + 32.62𝑠2 − 2.232𝑠 − 0.002507
)
10

𝑠
  

 

Δϕ𝑠𝑠(𝑡) = 10 [𝑓𝑡/𝑠] 
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Knowing that the transfer function indicates zero steady-state error, a simulation could be done in the full 

linearized longitudinal model. The simulation was done for a commanded change of velocity of 10 feet per 

second, and the results were plotted. Note that the trim thrust command was added to the control inputs to 

ensure the aircraft stayed with the thrust control limits in its response to the step input.  

 

 
Figure 5-11: Velocity Response for a Step Velocity Command 

 

 

 

 
Figure 5-12: Thrust Control Inputs for a Step Velocity Command 

 

Using the plots shown in Figure 5-5 and Figure 5-6, the maximum overshoot, maximum aileron 

deflection, settling time, and steady state error could be estimated as the following: 

 

𝑀𝑃 = 7.58 % 
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𝛿𝑒,𝑚𝑎𝑥 = 0.8258 

𝑡𝑠 = 5.3 [𝑠] 

𝐸𝑠𝑠 = 0 [𝑓𝑡/𝑠] 
 

These transient parameters satisfied the team members, while keeping the thrust command under the 

maximum of 1. Thus, the team members could now evaluate the altitude and velocity holds work together. 

 

Altitude and Velocity Hold Autopilot 
 

Now, testing the integrated longitudinal control system, the altitude and velocity controllers were activated 

at the same time. The first test gave an initial displacement of 10 feet in change of altitude and a commanded 

trim altitude and trim velocity. The following plots display the results of the simulation. 

 

 
Figure 5-13: Velocity Response for Initial Altitude Displacement 
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Figure 5-14: Thrust Commands for Initial Altitude Displacement 

 

 
Figure 5-15: Altitude Response for Initial Altitude Displacement 
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Figure 5-16: Elevator Commands for Initial Altitude Displacement 

 

 

From the various figures, it is evident that the full integrated control system is working. The altitude is 

returned to trim over a reasonable interval of time, while the resulting change in velocity is removed by 

thrust commands. The transient characteristics of the velocity are not perfect but are reasonable due to the 

jet lag and actuator dynamics. The next test gave an initial displacement of 10 feet per second in change of 

velocity and a commanded trim altitude and trim velocity. The following plots display the results of the 

simulation. 

 
Figure 5-17: Velocity Response for Initial Velocity Displacement 
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Figure 5-18: Thrust Commands for Initial Velocity Displacement 

 

.  

Figure 5-19: Altitude Response for Initial Velocity Displacement 
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Figure 5-20: Elevator Commands for Initial Velocity Displacement 

 

Like the first test, it is evident that the controllers are working. Both the velocity and altitude are returned 

to trim with reasonable elevator and thrust commands. The longitudinal controls are verified. 

 

Waypoint Navigation 
Waypoint Navigation Overview and Control Implementation 
The navigation simulation set 5 waypoints for the aircraft to navigate to. Using its current heading, the 

algorithm determined a desired roll angle such that the aircraft banks and turns towards the desired 

waypoint. Based on the trim velocity, the waypoint radii are set, determining how close to the point the 

aircraft needs to get to say it reached the waypoint.  

 

The provided waypoint navigation Simulink model needed to be edited for the F4 by replacing the propellor 

engine model with a jet engine model. After that, the PID controllers needed to be slightly edited by adding 

the variables to be defined in the .m file to tune the PID controllers. The four controllers implemented in 

the Simulink model are the same ones found in the Autopilot Control Design section. In this case, however, 

saturation limits are applied, and thus if the control system is asking for rudder past the limit, the rudder 

will stay at the limit.  

Simulation Results and Controller Performance 
Initially, the controls designed in the Autopilot Control Design section of the report were implemented into 

the model. These controllers did not work and resulted in the aircraft spinning and nose-diving into the 

ground. Even after extensive tuning, the aircraft was never adequately controlled, and the waypoints were 

never reached. One of the attempts has been plotted and will be discussed.  
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Figure 6-1: Translational Velocities for Waypoint Navigation 

 

 
Figure 6-2: Angular Velocities for Waypoint Navigation 
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Figure 6-3: Attitude for Waypoint Navigation 

 

 
Figure 6-4: Inertial Position for Waypoint Navigation 
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Figure 6-5: Control Inputs for Waypoint Navigation 

 

 
Figure 6-5: Horizontal Flight Path for Waypoint Navigation 

 

The control gains were essentially randomized and produced the plots above. This was the result after 

many different iterations, across P, PI, PD, and PID controllers for each. Evidently, the control inputs are 

saturating quickly, and often. This would suggest that the gains are too large for almost every mode. Yet, 

each mode affects the other, so it is difficult to determine what to change. Most notably, while two 

waypoints are reached, the aircraft is essentially nose-diving and would crash into the ground before 

achieving the waypoints. In summation, the attempts to implement the controls into the waypoint 

simulation were unsuccessful and would require more time and tuning capabilities.  
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Conclusion 
In summation, the F4 was an interesting aircraft to investigate, especially at a supersonic trim condition. 

The most notable characteristic, in the team’s opinion, is the striking similarity between the linear and 

nonlinear models for small deflections. Even at supersonic conditions, the linearized model still provides 

amazing insight into the aircraft dynamics and serves as a good basis for developing controls. In the end, 

however, the control developed in this report cannot be said to be successful as it did not result in the aircraft 

completing its waypoint mission. To improve this, the team would suggest running optimization algorithms 

set with bounds like the controls found in the Autopilot Control Design section of the report. That way the 

algorithm can find optimal results. The performance metric for the optimization function could be the ratio 

of waypoints hit over the number of waypoints, as well as altitude held over the trim altitude. These two 

metrics could help determine a good starting point for further optimization.    
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Appendix 
 

The following guide is structured similar to the zip file that was uploaded to canvas. The first number 

denotes the Deliverable folder the file can be found in.  

 

Deliverable 1 Folder: 

1.1 Deliverable1_TrimCond Trim conditions solver. 

1.2 runsim_F4: File to run the nonlinear F4 model. 

1.3 F4_6_DoF_runsim (Simulink): Full nonlinear F4 model. 

 

Deliverable 2 Folder: 

2.1 F4_linear_lat_runsim: Open loop analysis of linear lateral model with lateral doublets.  

2.2 F4_linear_long_runsim: Open loop analysis of linear longitudinal model with longitudinal 

doublets  

2.3 F4_runsim_alldeliv2: Combination of nonlinear and linear models to compare doublet 

simulations.  

2.4 F4_linear_long_sim: Simulink linear longitudinal model. 

2.5 F4_linear_lat_sim: Simulink linear lateral model. 

2.6 F4_6DoF_runsim: Simulink full nonlinear model. 

 

Deliverable 3 Folder: 

3.1 desired_eigs_lat: Function to find desired lateral eigenvalues. 

3.2 desired_eigs_long: Function to find desired longitudinal eigenvalues. 

3.3 F4_linear_lat_SAS_runsim: File to run linear lateral model with stability augmentation. 

3.4 F4_linear_lat_sim_SAS: Simulink linear lateral model with stability augmentation.  

3.5 F4_linear_long_SAS_runsim: File to run linear longitudinal model with stability augmentation. 

3.6 F4_linear_long_sim_SAS: Simulink linear longitudinal model with stability augmentation.  

3.7 F4_runsim_deliv3: File to run nonlinear model with stability augmentation implemented. 

3.8 F4_6DoF_runsim_SAS: Nonlinear Simulink model with stability augmentation. 

 

Deliverable 4 Folder: 

4.1 Roll_control_runsim: Code to drive the roll angle using aileron. 

4.2 Sideslip_control_runsim: Code to control the sideslip using rudder. 

4.3 Roll_Sideslip_control_runsim: Code that’s integrated the roll and sideslip controls. 

4.4 Alititude_Control_runsim: Code that maintains constant altitude using elevator. 

4.5 Velocity_control_runsim: Code that maintains constant forward velocity by using thrust controller. 

4.6 Altitude_velocity_control_runsim: Integrated model of the altitude and velocity control codes. 

4.7 Lateral_control_roll_sideslip: Simulink model of the integrated controls affecting the lateral 

stability of the F4. 

4.8 Longtitudinal_control_altitude_velocity: Simulink Model of the integrated altitude and velocity 

controls. 

 

Deliverable 5 Folder: 

5.1 eval_perf: Function to determine the success of a Kp’s for waypoint navigation. 

5.2 Finding_Kps: Optimization algorithm to try and determine control gains.  

5.3 runsim_F4_waypoint: File to run waypoint Simulink model. 
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5.4 F4_6DoF_runsim_waypoint_complete: Simulink model to follow waypoints.  

 

 

 

 

 
  



82 
 

 
 

References 


