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Abstract—Autopen systems, specialized machines to reproduce
handwritten signatures in large volumes, have existed for decades.
By constraining the end-effector to three degrees-of-freedom
(DOF), the specialized hardware simplifies the handwriting repli-
cation problem. This paper explores the use of a 7 DOF robotic
manipulator to perform the same tasks while not requiring the
specialized hardware used by autopen systems. We propose the
use of a computer vision-based trajectory generation approach
that models not only the pen stroke trajectory but also the
desired stroke thickness. To track the generated trajectories, a
PD force control is used to modulate the pen stroke trajectory
for thickness tracking, and the modulated trajectory is tracked
by a model predictive controller using linearized task-space
kinematics. The resulting pipeline achieves a success rate of
82.35% on handwriting excerpts from our custom dataset, which
includes both print and cursive text with varying stroke thickness.

Index Terms—manipulation, tool use, computer vision, optimal
control

I. INTRODUCTION

The replication of human handwriting by machines is a
capability with a rich history, dating back to early pantographs
and evolving into modern “autopen” systems. These auto-
mated signature machines are widely utilized for high-volume
signing tasks in government, celebrity correspondence, and
executive administration [1]. Traditionally, these systems rely
on specialized hardware configurations constrained to three
degrees-of-freedom (DOF), operating primarily as varying
planar plotters with a binary pen-up/pen-down mechanism [2].
Although effective for their specific intended use, the reliance
on dedicated, low-DOF hardware limits the flexibility and
application scope of automated handwriting replication.

In recent years, the ubiquity of multi-degree-of-freedom
robotic manipulators in research and industrial settings has
presented an opportunity to generalize handwriting tasks be-
yond specialized hardware. However, replicating the nuance of
human handwriting, specifically the variation in stroke width
and pressure, remains a complex challenge for general-purpose
robots. Unlike the constrained kinematics of an autopen, a 7-
DOF robotic manipulator introduces increased complexity that
requires sophisticated control strategies to ensure legible and
faithful reproduction.

Source code containing all data, experiments, and analysis is made available
at: https://github.com/gabearod2/calligraphy
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This paper proposes a framework for automated handwriting
using a Franka Emika Panda 7-DOF robotic manipulator [3].
We address the replication problem through a holistic approach
that integrates computer vision with control theory.

The objectives of this project are summarized as follows:

1) Computer Vision-Based Trajectory Generation: De-
velop a system that extracts not only the planar geometry
of a signature but also encodes desired stroke thickness
into the trajectory.

2) Hybrid Control Architecture: Implement a
Proportional-Derivative  (PD) force controller to
modulate the vertical (z-axis) trajectory for thickness
tracking.

3) Model Predictive Control (MPC) Tracking: Utilize an
MPC framework using linearized task-space kinematics
to track the modulated trajectory with high precision.

II. METHODS
A. Trajectory Generation

To enable precise force modulation, a computer vision
pipeline was developed to simultaneously extract the spatial
trajectory w and the local stroke thickness d from the input
image. The system architecture is illustrated in Fig. 1.

The processing sequence begins with image acquisition and
binary thresholding to maximize the contrast between the
handwriting stroke and the background. A Euclidean Distance
Transform (EDT) is then applied to the binarized image. Let
Q) C 72 denote the discrete image domain. We define S C (2
as the set of foreground pixels representing the handwriting
stroke, and B = Q \ S as the set of background pixels. The
Euclidean Distance Transform, D(u), for any pixel v € S is
defined as the minimum Euclidean distance to the complement
set B:

D(w) = min |ju — 1
(u) g}rggllu vl|2 (1)

where || - ||2 denotes the Lo norm. Consequently, the thickness
parameter § at a specific trajectory point is proportional to
2 - D(u). This operation calculates the distance from every
pixel within the stroke to the nearest zero-valued (background)
pixel, effectively creating a map where pixel intensity corre-
sponds to local stroke width [4].
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To derive the path for the pen tip, the binarized image is
processed using the Zhang-Suen thinning algorithm [5]. This
morphological operation iteratively erodes the stroke bound-
aries to produce a skeletonized, single-pixel-wide representa-
tion of the trajectory. The resulting skeleton is segmented into
discrete contours, which are sorted spatially to enforce a left-
to-right writing sequence [6]. Finally, the system traverses the
ordered contours, extracting the 2D Cartesian coordinates to
form the trajectory w. At each coordinate, the corresponding
thickness value is sampled from the EDT map to generate the
thickness profile §. These parameters are subsequently output
to the control architecture.
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Fig. 1. Computer vision pipeline used for trajectory generation.

B. Trajectory Following

We aim to compute joint position commands that allow the
Franka arm to follow both the desired writing trajectory w and
the associated thickness profile 4. Assuming that thickness
corresponds to how firmly the pen-tip is pressed into the
writing pad [7], we propose a controller with two components:

1) Outer loop force controller: Maps the desired thickness

profile & to a modified trajectory w using force control.

2) Inner loop kinematic controller: Maps the modified

trajectory to positional joint commands qcng by opti-
mizing over a linearized task-space dynamics model.

1) Outer-Loop Force Control: In writing, we assume that
thicker strokes are produced when the writing utensil applies
a greater normal force. To represent this behavior, we model
thickness using a spring model. We first map a desired
thickness to a desired force using

fs = ks, 2

and we model the estimated contact force between the pen
and the pad using

fo=k. (Zpen—tip - Zpad)- 3

In simulation, we measure the actual normal force f, between

the pen and the writing pad when it is available and use f,

when it is not. This allows a smooth transition between contact

and non-contact modes. Additionally, this implementation uses

ground-truth contact forces between the bodies as opposed to

force-torque sensors in the simulator.

Thus, for a prediction horizon, we can define the error vector

T

es=1[0 0 k50— fy] )

where § is the desired thickness profile over the current

prediction horizon. Finally, the trajectory modulation for the
given horizon can be defined as the PD update rule:

w=w — k‘p65 — kdég, (5)

where £, and k4 are tuning constants.
2) Inner-Loop Kinematic Control:

a) Linearized Task-Space Dynamics Model: Following
[8], we discretize the kinematic joint model using

oG~ G- i~ 2Gi1 +Gi2 ©)
e At 0 @ At? ’
For a finite-time horizon T = [t;,tf], we can vertically

concatenate the joint positions, velocities, and accelerations,
and rewrite the kinematic relationships as
q= qua q= San (7N

where finite-difference matrices are

r1-1 0 O
S 1 (o1 —10 - o
LO -~ 0 1 -1
rir-21 0
S 1 o1 —-21 .- 9
a—@ L . ()
LO -~ 0O 1 =21

We also define a task function” g : R +— R™¢ where

w=g(q), Aw=rJAq, (10)
and J € R"s*"™ is the task-space Jacobian. In our case, g
corresponds to the forward kinematics of the Franka robot in

simulation. We assume ¢ is C'! for later use in optimization.

b) MPC Formulation: In each control cycle, we con-
struct a nominal joint trajectory § = {do,...,qn,} for the
corresponding task-space trajectory w = {wyo,...,Wy,} by
computing the inverse kinematics (IK) for each w. We replace
the first element of the prediction horizon with the current
measured state ¢ and the pen-tip position w to ensure that the
MPC accounts for the current state. The simulator also allows
us to gather the task-space (linear and angular) Jacobians Jy
at each point in the nominal joint space trajectory g.
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Fig. 2. The proposed control architecture for handwriting trajectory tracking combining thickness tracking force control, inverse kinematics for nominal
trajectory generation, and a linearized MPC with joint-space position execution in mengine.

We then formulate the optimization problem for the kine-
matic MPC approach as follows:

i+ny

mgnj = Z (jk(cfk - %)T) Qe (jk@k: - Qk)) (11
k=i

~ T ~
+ (@k — ar) Qr(Gk — ax)

+ QkT Q?;qk

T ..

+ Gy, Qadr,
s.t. qmin < qk < q.maxv
Gmin < Gk < Gmax;
where ., € R"*™s Q. € R"*", Q, € R"™", and Q, €
R™*"™ denote the weighting matrices for the tracking task error
(position and orientation), joint-space regularization, velocity

smoothing, and acceleration smoothing terms, respectively.

Linearization allows us to simplify this optimization pro-
gram into the following quadratic program (QP):

Vke{i,...,i+np}.

minJ7 =q' Qq+ 2p' q + const, (12)
a

S.t. qmin < qu < (.lmaxv
Qmin S q S Qmax-

This simplification allows us to rapidly compute the optimal
sequence of joint position commands over the prediction
horizon. We take the first joint position command as g¢.ng and
pass it to the simulator’s lower-level position controller.

III. IMPLEMENTATION DETAILS

We implement the proposed framework within mengine
[9]. A custom URDF model of a pen was developed for ease
of grasping and to provide a rounded pen-tip. The pen is given
a high friction coefficient for stable grasping, while the writing
pad is modeled as a planar object with zero sliding friction to
simulate a ballpoint pen-paper interaction.

The trajectory generation pipeline is packaged as a callable
function that returns a set of 2D cartesian coordinates sepa-
rated by character with accompanying thickness profile. Given
the set of contours in the generated trajectory, the controller
first uses IK to reach the first pen-tip contact. Upon contact,
the MPC is executed with a prediction horizon n, = 10, a
control timestep of At = 0.2 [s], and padding the reference

trajectory with its final point when the horizon contains fewer
than n,, points.

To simulate writing, the implementation initializes a sphere
of radius r = f,/ks at the simulated contact point. Finally,
to track the pen-tip pose and optimize over joint angles, the
desired trajectory is also displaced by the resultant vector
from the pen-tip to the end-effector by accessing the pen’s
orientation at each control cycle. This allows the controller to
adjust to the grip of the pen.

IV. EXPERIMENTS AND RESULTS

A. Trajectory Generation Evaluation

To validate the fidelity of the trajectory generation pipeline,
a comparative analysis was conducted between the ground
truth binarized image A and the reconstructed stroke geometry
B on 17 different handwriting excerpts written on an iPad.

Error Map (Jaccard Index: 95.74%)
White=Match, Green=Missed Ink, Red=Spillover

Fig. 3. Jaccard Index and Difference Map

Quantitatively, geometric congruence was measured using
the Intersection over Union (IoU) metric, formally known as
the Jaccard Index J;(A, B). This metric quantifies the overlap
between the finite sample sets, defined as:

_|ANB
- |AuB|’

where a value of 1 indicates perfect reconstruction and 0 indi-
cates disjoint [10]. For the word Gabriel, the pipeline produced
Jr(A, B) = 0.9574, which indicates excellent reconstruction.
The quantitative results of the remainder of the dataset are
shown in Table L.



TABLE I
PER-WORD TRAJECTORY GENERATION PERFORMANCE

Word Jaccard Index
arnav_print 0.9641
arnav_cursive 0.9456
g_print 0.9680
gabriel_print 0.9562
gabriel_cursive 09174
manipulation_print 0.9534
manipulation_cursive 0.9481
mechanics_print 0.9523
mechanics_cursive 0.9463
motion_print 0.9527
motion_cursive 0.9338
symbol_print 0.9605
symbol_cursive 0.9221
talk_print 0.9637
talk_cursive 0.9620
virtual_print 0.9554
virtual_cursive 0.9628
Mean 0.9508

Qualitatively, a difference map was generated to visualize
discrepancies. As illustrated in Fig 3, the reconstruction is
overlaid onto the ground truth: white pixels denote perfect
alignment (True Positives), green pixels indicate omitted
stroke areas (False Negatives), and red pixels represent tra-
jectory overshoot (False Positives).

B. Control Approach Ablation

i
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Fig. 4. Ablation comparison for the letter G.

To evaluate our control framework, we perform an ablation
comparing: (i) a bare inverse kinematic approach, (ii) the linear
MPC without force control, and (iii) the linear MPC with force
control. All methods are given the same reference trajectory
from the letter G. Fig 4 illustrates the qualitative results of
the ablation study, while Table II reports the quantitative
results. The proposed approach outperforms the more naive
approaches by a wide margin. Although the other methods
initially perform adequately, the thickness and position track-
ing diverge throughout the length of the trajectory.

C. Trajectory Following Evaluation

To evaluate the proposed trajectory-following architecture,
we use our aforementioned custom dataset of 17 different
handwritten excerpts. They were chosen to span a represen-
tative set of handwriting motions of varying curvature, stroke
length, and thickness variation.

TABLE II
COMPARISON OF TRACKING PERFORMANCE ACROSS CONTROL
METHODS FOR THE LETTER G

Method RMSE,, | MaxErr,, RMSE; MaxErr;
1K 0.017204 | 0.037448 | 0.016401 | 0.052959
MPC 0.012239 | 0.019739 | 0.006387 | 0.014597
MPC + PD | 0.002234 | 0.004541 | 0.003132 | 0.005209

All values are expressed in meters [m].

A varied dataset exposes the strengths and weaknesses
of the controller. The primary failure mode observed in
unsuccessful trials was degradation of the grasp on the pen
until it fully slipped out the gripper’s grasp. This was espe-
cially evident for words with thicker stroke profiles, such as
mechanics_print. The higher thicknesses require higher
normal forces, which generate greater reaction forces and
torques at the grip of the pen.

Additionally, longer trajectories increased the rate of grasp
failure. The excerpt manipulation_cursive, for exam-
ple, saw general degradation of the grasp due to orientation
changes in the pen grasp.

Together, these failure mode characteristics highlight the
fragility of the pen-grasp. Despite this, as shown in Table III,
we observe that for trajectories as long as 2.69 [m] and thick-
nesses up to 12.6 [mm], the tracking of the task-space remains
excellent with an average RMSE,, = 1.16 [cm]. However,
thickness tracking could be improved by further gain tuning
or adding an integral gain with an average RMSE; = 3.5
[mm)].

TABLE III
PER-WORD TRACKING PERFORMANCE (MPC + PD CONTROLLER)
‘Word RMSE,, [m] | RMSE;s [m] | Success

arnav_print 0.006599 0.002727 Yes
arnav_cursive 0.006675 0.002201 Yes
g_print 0.002234 0.003132 Yes
gabriel_print 0.035215 0.006134 Yes
gabriel_cursive 0.008262 0.001614 Yes
manipulation_print 0.007883 0.006113 Yes

manipulation_cursive — — No

mechanics_print — — No
mechanics_cursive 0.049613 0.006741 Yes
motion_print 0.005574 0.002810 Yes
motion_cursive 0.005357 0.002691 Yes
symbol_print — — No
symbol_cursive 0.008160 0.002659 Yes
talk_print 0.004921 0.004143 Yes
talk_cursive 0.006492 0.003211 Yes
virtual_print 0.006542 0.002905 Yes
virtual_cursive 0.013484 0.002217 Yes
Mean (successful only) 0.0116 0.0035 —
Success Rate 82.35%

All values are expressed in meters [m].

V. CONCLUSION

In this report, we present a unified approach to writing
using a 7-DOF robotic manipulator. By combining a computer
vision pipeline with a hybrid control architecture, the system
performs human-like handwriting for a variety of words and



writing styles in simulation. Experiments with 17 different
words highlighted limitations due to grasp degradation, but
showed good task-space tracking performance. These results
highlight the difficulty of contact-rich force control even in
simulated robotic environments, while validating the effec-
tiveness of control theory in well-defined problems. Future
improvements might include additional grasp stabilization, the
use of force-torque sensors for normal force estimation, or the
expansion of the force control architecture to account for grasp
limitations.
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